

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2010 2. REPORT TYPE

3. DATES COVERED
 00-09-2010 to 00-10-2010

4. TITLE AND SUBTITLE
Crosstalk: The Journal of Defense Software Engineering. Volume 23,
Number 5, Sep - Oct 2010

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS/MXDEA,6022 Fir Avenue,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering September/October 2010

4

5

9

13

16

21

25

3
29
30
31

DeparDepar tmentstments

From the Sponsor

Coming Events

Web Sites

BackTalk

CCrroossssTTaallkk Goes All Electronic:Turning Necessity into
Opportunity
In this last print edition, CrossTalk’s Publisher discusses reasons for
the change of format to electronic only—and the benefits of that move.
by Kasey Thompson

Static Analysis Is Not Just for Finding Bugs
This article examines how static analysis tools can provide more
“human-readable” output, why they should focus on humans instead of
bugs, ways to combine them in automated code review, and the pros and
cons of their use in computing properties.
by Dr. Yannick Moy

Considering Software Supply Chain Risks
This article examines the software supply chain’s complexity, common
weaknesses and how to mitigate them, and how those practices could be
applied to the acquisition of commercial software components.
by Dr. Robert J. Ellison and Dr. Carol Woody

Information Assurance Applications in Software Engineering
Projects
U.S. Naval Academy computer science student projects—developing a
training and personnel database with multi-level views, creating
emergency notification system authentication, and two cybersecurity
competitions—provide “lessons learned” in information assurance.
by Lt. Col. Thomas A. Augustine (Ret.) and Dr. Lori L. DeLooze

Studying Software Vulnerabilities
Injection is the single most exploited software weakness type, and the
authors outline a process for building a semantic template that can study
injection and other vulnerabilities—and work synergistically with other
security standardization efforts.
by Dr. Robin A. Gandhi, Dr. Harvey Siy, and Yan Wu

The Balance of Secure Development and Secure Operations
in the Software Security Equation
Effectively addressing software security requires balancing both secure
development and operations, and this article shows how Common Attack
Pattern Enumeration and Classification can help.
by Sean Barnum

Two Initiatives for Disseminating Software Assurance
Knowledge
The authors examine how documenting software assurance knowledge to
ensure its growth and integration into various educational settings and
developing a curriculum for an MSwA degree program will improve the
standing of software assurance.
by Dr. Nancy R. Mead and Dr. Dan Shoemaker

GameGame-Changing-Changing TToolsools andand PracticesPractices

Cover Design by
Kent Bingham

ON THE COVER

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CrossTalk ONLINE

Stephen P.Welby

Jeff Schwalb

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Marek Steed

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S.Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cybersecurity Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Contacting Us: Correspondence can be sent to:

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

E-mail Notification: Readers can receive notifica-
tion when new editions are online by e-mailing or
phoning CrossTalk.

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.
af.mil/crosstalk>, call (801) 777-0857 or e-mail
<stsc.webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

PPolicies,olicies, NeNews,ws, andand UpdatesUpdates

September/October 2010 www.stsc.hill.af.mil 3

From the Sponsor

No developer or application manager likes to learn that their code
was hacked and their applications exploited. Therefore,

CrossTalk readers who manage and write code are often the
strongest advocates of “doing the right thing,” especially when it
comes to software assurance (SwA). That is why the DHS is proud to
sponsor this issue, primarily focused on SwA Game-Changing Tools and
Practices.

Many SwA tools focus on automatic bug-finding, the first stage in a two-
phase process where the tool finds bugs and the human then corrects them; Dr.
Yannick Moy’s article, Static Analysis Is Not Just for Finding Bugs, argues for a larg-
er view of SwA by looking at the computing properties of software.

With today’s global IT software supply chain, project management and software/systems
engineering processes must explicitly address security risks posed by exploitable software. In
Considering Software Supply Chain Risks, Dr. Robert J. Ellison and Dr. Carol Woody point out that
a software supply chain can involve a combination of internal development, outsourced devel-
opment, multiple commercial suppliers, and the use of legacy systems. The composite system
inherits the risk of SwA failure at any point in such a supply chain. The authors recommend
three practices: 1) mitigation of items on a CWE/SANS Institute Top 25 list linked to detailed
design or coding practices, 2) mitigations associated with risk analysis, requirements, architec-
ture, and testing, and 3) employment of a full life-cycle context for security improvement.

Two articles build on the SwA Automation Protocols from MITRE’s DHS-sponsored
Making Security Measurable program. Studying Software Vulnerabilities by Dr. Robin A. Gandhi,
Dr. Harvey Siy, and Yan Wu points to the potential for using these automation protocols to
build tools for developers. Sean Barnum’s The Balance of Secure Development and Secure Operations in
the Software Security Equation shows how these protocols enable development and operations
staffs to better communicate and cooperate to secure applications.

Education is another essential arena for addressing the security risks posed by exploitable
software. Lt. Col. Thomas A. Augustine (Ret.) and Dr. Lori L. DeLooze examine Information
Assurance Applications in Software Engineering Projects from U.S. Naval Academy student capstone
projects. Dr. Nancy R. Mead and Dr. Dan Shoemaker detail Two Initiatives for Disseminating
Software Assurance Knowledge: Carnegie Mellon’s SwA Master’s program, providing an explicit cur-
riculum of knowledge and skills necessary to produce a well-educated SwA professional; and
the University of Detroit Mercy’s efforts to give every instructor in a computer-related discipline
access to validated content and instructional materials that can be easily incorporated into exist-
ing courses.

Online readers of CrossTalk get a bonus article: Patti Spicer’s Gaining Software Assurance
Through the Common Criteria gives both a background of the Common Criteria and explains how
its certification process provides software product assurance.

As the new Director of the National Cyber Security Division, part of my responsibility is to
advance efforts like those described in this issue. I look forward to working with talented pro-
fessionals like readers of CrossTalk, who make our nation’s software and applications
resilient and secure.

Changing the Game in Software Assurance

Bobbie Stempfley
Director, National Cyber Security Division

CrossTalk
would like to thank
the Department of
Homeland Security

for sponsoring
this issue.

4 CROSSTALK The Journal of Defense Software Engineering September/October 2010

Policies, News, and Updates

CrossTalk Goes All Electronic:
Turning Necessity into Opportunity

CrossTalk is moving to an all-electronic format beginning with our November/December 2010 issue.
Many reasons and discussions have shaped our decisions to make this move, with budgets, costs, and spon-
sorships having a major impact.

Understandably, some of our avid readers will find the change unwelcome.
The first silver lining is that we will still have a laid out version of CrossTalk, allowing for the full edi-

tions and individual articles to be downloaded in PDF form. Secondly, the numbers suggest that it’s an oppor-
tune time for changes:

• CrossTalk’s online edition averages 1.1 million visitors per month, while our hardcopy subscribers—
currently less than 1 percent of our readership—has remained steady. We can now focus our mission on
the methods that a majority of our readership uses.

• CrossTalk is making every effort to be environmentally conscious. Eliminating a print version reduces
our global footprint in the neighborhood of 700,000 printed pages per issue.

Readers will also notice continuing changes to our Web site. These improvements will aid all of our read-
ers, whether they are seeking the current issue or searching our issues archive, dating back to 1994.

We understand the print version is an important tool—the passing from colleague to colleague, the ear-
marked reference copies on desks—it’s what CrossTalk has always been about. I’m reminded of what I
saw at this year’s Systems and Software Technology Conference, from Hillel Glazer’s showing off of our
January/February 2010 CMMI issue to Dr. Robert Cloutier’s Plenary Session kudos causing a run on the May
2005 edition. Even in the electronic age, our print versions still produce a significant impact.

But we have to change. We hope future sponsorship increases, and with that a return to distributing our
journal to the tens of thousands of people and businesses that like holding CrossTalks in their hands.

Please visit <www.stsc.hill.af.mil/crosstalk> to sign up for an electronic notification and a link to future
CrossTalk issues.

We thank you for reading CrossTalk and ask for your continued support in this transition.

Kasey Thompson
CrossTalk Publisher

kasey.thompson@hill.af.mil

Game-Changing Tools and Practices

September/October 2010 www.stsc.hill.af.mil 5

Static analysis tools (see the sidebar on
page 7) are very useful for finding bugs.

They go far beyond the capabilities of
compilers (warnings) and coding standard
checkers to which they are directly related.
Like compilers when they generate warn-
ings, static analysis tools aim to detect pos-
sible run-time errors (e.g., buffer over-
flow) and logic errors (e.g., variables not
referenced after being assigned). Like cod-
ing standard checkers, static analysis tools
sometimes allow users to define their own
set of patterns to flag. But static analysis
tools generally perform much more
sophisticated analyses than is typically
found in compilers and coding standard
checkers (e.g., looking at global context
and keeping track of data and control
flow).

The appeal of these tools is immedi-
ate, providing an almost yes/no answer to
very hard problems (termed undecidable in
mathematical terms). But while you’re ask-
ing Are there any bugs in this code?, the tool is
actually answering a subtly different ques-
tion: Have any bugs been detected in this code?
Thus, when a tool answers no problems, it
means that it couldn’t detect any bugs; it
doesn’t mean that the code has no bugs.
Further, the actual question should be:
Have any shallow/common bugs been detected in
this code? As explained by a team at soft-
ware integrity company Coverity: “errors
found with little analysis are often better”
because they are clear errors that a human
reviewer will more likely understand [1].

That is the catch. Static analysis tools
are not compilers whose output (object
code) rarely needs to be inspected. They
produce results for humans to review. At
the very least, a human needs to under-
stand the problem being reported—and
also, in most cases, the reason for the
report—in order to assess what, if any,
correction to make.

Focusing on Human-Readable
Output
Because humans ultimately label each
problem reported by a static analyzer as

either a real error or a false alarm whose ratio
is used to evaluate the quality of a tool,
commercial tools strive to present the user
with understandable warnings supported
by explanations. Even trivial changes to
the messages may have a large impact. In
my own experience working on the static
analyzer PolySpace, I was quite surprised
by the positive response from customers
on what seemed to be simply a cosmetic
change. Messages for warnings had been
reworded to reflect the associated likeli-
hood, so that the message out of bounds
array index associated with certain (red)
and possible (orange) warnings was now
turned into Error: array index is out of
bounds and Warning: array index may be out of
bounds.

The short message is usually accompa-
nied by a link to a page describing the
intent of the checker being exercised, and
the typical errors that it finds. Some static
analyzers also display more contextual
information that helps the user in diag-
nosing the problem. For example, PREfix,
an internal tool at Microsoft, displays
whether the problem occurs inside a loop
or not, the depth of calls that exhibit the
problematic execution, etc.

As most problems only show up in
some executions reaching a particular pro-
gram point, a useful piece of information
is the execution path leading to these
problematic executions. Static analyzers
typically display such paths by coloring the
lines of code defining the path (e.g., the
first line of each block of code involved).
The path may involve function calls, in
which case the user can usually unfold the
call to follow the path. Some static analyz-
ers even display contextual explanations
along the path to help follow the rationale
for a given warning.

Still, as Coverity’s team puts it,
“explaining errors is often more difficult
than finding them” [1]. This means that a
balance is found in practice between
explaining displayed warnings and hiding
those warnings that cannot be so easily
explained. As a result, real errors—which

are detected but are complex to explain—
may fail to be reported: “For many years
we gave up on checkers that flagged con-
currency errors; while finding such errors
was not too difficult, explaining them to
many users was” [1].

Static Analysis for Critical
SwA
Finding bugs with static analysis tools,
even simple bugs that testing would catch
is, of course, useful. Embedded systems
expert Jack G. Ganssle advocates doing
inspections before testing because inspec-
tions are 20 times cheaper than writing
tests: “It is just a waste of company
resources to test first” [2]. As human time
is far more expensive than CPU time, the
same argument shows that static analysis
should be performed before inspections
or testing, even for finding simple bugs.

However, the nets that static analysis
tools are using to catch bugs have a large
mesh, too coarse for critical SwA. One
example is integer overflow: adding two
large positive integers and getting a nega-
tive integer as a result. These are rather
unimportant bugs for most commercial
static analyzers, and are usually not even
advertised on the list of vulnerabilities
they look for. There is some rationale as to
why integer overflow is not a high priority.
At Microsoft Research, I worked with a
team that augmented PREfix with the abil-
ity to detect integer overflow bugs—and
then applied it to a large Microsoft code-
base comprising several million lines of C
and C++ [3]. The tool returned with tens
of thousands of possible integer over-
flows—and almost all of them were
intended or benign. With special heuristics
to hide most false alarms, the tool returned
with many fewer warnings (still hundreds).
Three days of reviewing warnings finally
uncovered 15 serious bugs, most of which
were related to security issues. Relying on
user review to find a few serious bugs
amidst a large number of warnings is not
the image that commercial static analyzers
are trying to achieve.

Static Analysis Is Not Just for Finding Bugs
Dr. Yannick Moy

AdaCore

Static analysis tools are gaining popularity for safeguarding against the most common causes of errors in software. The main
focus of these tools is on automatic bug-finding—the first stage in a two-phase process where the tool finds bugs and the human
then corrects them. This article explains that such a goal is too narrow for critical software assurance (SwA). Instead, static
analysis tools should adopt a broader perspective: computing properties of software.

Game-Changing Tools and Practices

Static Analysis for Automated
Code Review
Instead of advocating a fully-automated
approach that considers human review as
a bottleneck in the application of static
analysis, some have taken the opposite
view and regard static analysis as a mecha-
nism that can expedite manual code
review.

Brian Chess and Jacob West from
Fortify Software devote a complete chap-
ter in [4] to static analysis as part of the
code review process. They consider warn-
ings issued by static analysis tools as clues
that a non-trivial safety or security argu-
ment has to be made by a human review-
er, based on the fact that “static analysis
tools often report a problem when they
become confused in the vicinity of a sen-
sitive operation” [4]. They also insist that,
whenever possible, a problem found by
code review that is not reported by the
tool should be the basis for a new custom
rule in the static analyzer. Although many
tools supply an application programming
interface for defining such custom rules, it
is not likely that most errors found during
code review can be easily encoded into
such rules (keep in mind that several orga-
nizations can create custom checkers).

Tucker Taft and Robert Dewar have
gone further, explaining how to leverage
static analysis tools for automated code
review [5]. This requires a way to query
the internal information computed by the
tool instead of just the warnings it issues.
They show how to conduct a code review
of inputs and outputs, preconditions and
postconditions, etc., based on information
generated by static analyzer CodePeer.
Undoubtedly, making static analysis a
partner in code review presents many
questions concerning the interaction
between the tool and the reviewer: One
must determine how much information to
display, how to display it, and which
queries should have displayed the infor-
mation. So far, static analysis tools have
largely stayed away from this issue because
of the difficulties in dealing with the large
amount of information available.

However, combining static analysis
with code review holds the promise of
each method complementing the other,
since their strengths are in different areas.
Tools are deterministically sound and
unsound (whether by design or through
errors in the tool itself or in its setup),
while humans are unpredictably sound
and unsound. I recently co-conducted a
very small experiment to compare the
results of static analysis and code review
for finding bugs in a Tokeneer system [6]

whose security properties were formally
verified. The results of this experiment
suggest that each method catches bugs the
other method misses.

Focus on Humans, Not on
Bugs
Orienting static analysis towards automa-
tion-assisted code review requires shifting
the focus from finding bugs to helping a
human understand various issues about
the code, from data-flow to exception
handling to proper input validation. This
does not mean abandoning warnings. On
one hand, tools are very good at systemat-
ically detecting a clearly defined problem,
whereas humans make errors. On the
other hand, tools cannot easily deal with
the specific project issues or translate
informal specifications into code verifica-
tion activities. Michael D. Ernst believes
that “humans are remarkably resilient to
partially incorrect information, and are
not hindered by its presence among (a suf-
ficient quantity of) valuable information”
[7].

The idea is to automate all the things
that can be automated, but no more. With
enough eyes, all bugs are shallow. We can-
not say the same about enough tools. The
choice of what is and is not important is
best left to a human to decide, provided
suitable user interactions are built into the
tools. The problem is that static analyzers
targeted at bug-finding may not be so easy
to re-architect for answering queries from
a user. Many of these tools only consider
sets of execution paths that do not cover
all cases; therefore, they may not easily
provide information on all executions.

Tools like PolySpace and Frama-C dis-
play ranges of integer variables (and
pointer variables for Frama-C) on
demand: When the user puts the focus on
a variable in the code, the range corre-
sponding to all the possible values of this
variable (in all executions) is displayed in a
tool-tip or in a side panel. PolySpace uses
the same kind of interaction to display all
the information it computes about possi-
ble run-time errors; it is emphasized by
coloring the code using the standard con-
vention of green for ok, orange for warn-
ing, and red for error.

Static Analysis for Computing
Properties
An absence of run-time errors is the first
property that comes to mind when talking
about static analyzers. Most tools cannot
compute this property, as they are
designed to report only a subset of all
possible errors and analyze only a subset

of all possible executions. To the best of
my knowledge, only three commercial
tools compute this property: the Poly-
Space and CodePeer tools, and the
SPARK programming language. By focus-
ing on humans rather than bugs, all three
have found ways to solve the false alarm
problem: PolySpace colors the code and
lets users query individual program points
for possible run-time errors; CodePeer
partitions warnings into three buckets
(high, medium, low) with low warnings
only presented on user request; and
SPARK imposes enough restrictions
(checked by static analysis) that the false
alarm rate is low (e.g., there can be no read
of an uninitialized variable). All of these
tools also allow recording manual analysis
of warnings for reuse when the code is
reanalyzed after being modified.

Absence of run-time errors is not the
only property of interest in critical SwA.
In fact, it is rather the least interesting
property (things behave as they are writ-
ten), except that it must hold in order for
the program to respect any other proper-
ty, and it could ideally be verified from
source code only without any user guid-
ance. Absence of run-time errors is some-
times framed as program correctness,
which tends to boost its importance.

In a recent position paper [8], software
engineering pioneer David Lorge Parnas
warns that this abstract notion of correct-
ness makes no sense in practice:
“Correctness is not the issue.” Indeed,
correctness is always relative to a given
specification and every non-trivial specifi-
cation is wrong, whether it is formal or
informal. The usual wrongness is being
incomplete. This is especially true for for-
mal specifications, because no existing
formal language can express all the prop-
erties we expect from a correctly operating
system, in particular for embedded soft-
ware that interacts with the outside world.
As an example, a correct compiler is one
that must satisfy a number of require-
ments, including the issuing of useful
error messages. No formal language can
express this specification. Instead of cor-
rectness proofs, Parnas urges static analy-
sis tool writers to focus on property calcu-
lation, which is the norm in other engi-
neering fields.

We are interested in two types of
properties:
• Functional properties like values, rela-

tions, preconditions, postconditions,
and dependencies.

• Non-functional properties like cover-
age, memory footprint, worst-case
execution time (WCET), and profiling.

Most static analyzers are already capable

6 CROSSTALK The Journal of Defense Software Engineering September/October 2010

Static Analysis Is Not Just for Finding Bugs

September/October 2010 www.stsc.hill.af.mil 7

of generating functional information
because they internally compute program
invariants that are predicates describing
some constraints respected by the pro-
gram (e.g., the fact that variable X is posi-
tive at some point, or more complex rela-
tions between variables like linear inequal-
ities and Boolean combinations of such
inequalities that hold at some point).
Preconditions and postconditions are spe-
cial kinds of invariants that are particular-
ly interesting, because they make function
interfaces explicit.

The first problem is that a static ana-
lyzer may compute a large number of such
invariants, most of which are not of inter-
est to the user. As already mentioned, one
solution is to let the user indicate which
invariants are of interest. Some tools
already display the ranges of values taken
by variables when a user selects such a
variable in the program. Ideally, we would
like to provide an arbitrary expression, say
X + Y, and ask the static analyzer for all
invariants at a specific program point that
mentions this expression.

A second problem is that many static
analyzers do not exactly compute invari-
ants, either because they analyze only one
path (or set of paths) at a time, or because
they perform unsound simplifications
during their analysis. In the former case,
the predicate that characterizes the path
(or the set of paths) analyzed is usually not
easily readable, so simply outputting
invariants of the form predicate-for-the-path
implies invariant-for-the-path is unlikely to be
useful. Instead, we can imagine that the
path (or the set of paths) is displayed by
highlighting appropriate lines in the
source code (as is already done for warn-
ings)—and that only the invariant part is
displayed. Even in the case where the sta-
tic analyzer performs unsound simplifica-
tions (possibly missing a real error), giving
access to the internal invariants may help
users understand the simplifications per-
formed by the tool. When looking for
integer overflow bugs in a large codebase
at Microsoft, I found it very useful to have
access to the models computed by PREfix
for each function. These models gave the
invariants at function exit (postconditions)
computed by the tool for a set of paths
described by invariants at function entry
(preconditions). This was critical to quick-
ly discard warnings caused by an incorrect
model computed by the tool, which made
it possible to concentrate on actual errors.

Some static analyzers also compute
non-functional properties (i.e., properties
that are not related to the correctness of
the program’s computations). Many static
analyzers warn about dead code, which is

the same property as code coverage, only
seen from the other direction. Although
general coverage seems hard to attain by
static analysis, unit coverage that considers
the coverage of a function’s constructs for
all possible calling contexts (and thus all
values of inputs) is much more feasible.
Again, mapping the results of the analysis
onto the source code provides the best
user interaction here. Generating tests
whose execution shows a line of code is
also a constructive way to compute the
property that a line of code is not dead.

Expanding on this idea, we can imag-
ine giving a predicate at a program point,
say X < Y, and asking the static analysis
tool to produce a counterexample. This is
a very efficient way to make progress
when the tool does not generate an invari-
ant which, according to the user, should
hold. Without such interactions, the user
is usually left wondering if the tool was
not clever enough to prove the property—
or if it holds at all. Additionally, seeing the
actual counterexample (instead of only
knowing there is one) greatly facilitates
understanding of the problem. What is
important here is the user interaction,
which allows very quick feedback on a
question that the user finds interesting.

Specialized static analysis tools already
provide information such as memory
footprints and WCET. For example,
Airbus is using these tools to help certify
their programs at the highest levels of the
DO-178 avionics safety standard [9].
However, not much work has been done
with these tools to provide a rich user
interaction at the function level.

New ways of interacting with static

analysis tools are desirable and possible.
As a very simple example, some integrated
development environments (IDEs) can
display the shortest path in the call graph
between two functions when a user asks
whether one can be called from the other.
Other IDEs highlight entities based on
syntactic categories, triggered when the
user puts the cursor on an entity. Those
are the kinds of useful interactions that
static analyzers should aim for.

Conclusion
The current emphasis on static analysis
will not necessarily provide the tools that
are needed for critical SwA, which is based
on human assessment of fitness-for-purpose.
Useful tools are those that compute
human-readable properties of the soft-
ware, providing reviewers with much
deeper information than is currently avail-
able. The Agile Manifesto [10] correctly
recognizes that individuals and interac-
tions should be our main focus for creat-
ing useful processes and tools.

One static analysis vendor goes as far
as to admit: “No one wants to be on the
hot seat when a critical vulnerability is
exploited in the field or when a coding
mistake causes product recalls, brand
damage, or revenue losses.” I do not think
that static analysis provides the kind of
insurance suggested in [11]; like other sys-
tems assurance, critical SwA is not princi-
pally a matter of tools, but a matter of
“leadership, independence, people, and
simplicity” [12].

Static analysis for code review is cer-
tainly a very promising venue for critical
SwA. Looking even further, static analysis

A static analysis tool (or static analyzer) has three major characteristics:
• Its input is the source code for a program in a programming language.
• It analyzes the program’s structure without executing the program.
• As its primary function, the tool outputs information that is relevant to humans

developing or maintaining the program.
This general definition includes tools such as coding standard checkers, bug finders, and
test case generators.

Many static analysis tools attempt to detect problematic constructs. Ideally, such a
tool should identify all constructs in a given program—and only those constructs
encountering the problem during execution. Unfortunately, mathematical com-
putability theory shows that it is impossible to produce such a tool for analyzing arbi-
trary programs in any nontrivial programming language. So, in practice, a tool will suf-
fer from either one or both of these deficiencies:
• Failure to detect a problem, yielding what is (perhaps confusingly) known as a false

negative.
• Mistakenly flagging a correct construct as a problem, yielding a false alarm

(known in the literature as a false positive).
A tool that does not generate false negatives is said to be sound. A tool’s precision

is a measure of its ability to avoid generating false positives. Soundness and precision
are tradeoffs, so the challenge for a tool provider is to strike an appropriate balance.

What Is a Static Analysis Tool?

Game-Changing Tools and Practices

8 CROSSTALK The Journal of Defense Software Engineering September/October 2010

used during development (e.g., for code
review preparation) can help a program-
mer understand complex behaviors and
detect subtle mistakes—like a “buddy”
does in pair programming. In other words,
static analysis for humans.u

Acknowledgements
Many colleagues at AdaCore provided very
valuable comments on an initial version of
this article, in particular Bob Duff and Ben
Brosgol.

References
1. Bessey, Al, et al. “A Few Billion Lines of

Code Later: Using Static Analysis to
Find Bugs in the Real World.”
Communications of the ACM 53.2. Feb.
2010 <http://cacm.acm.org/magazines
/2010/2/69354-a-few-billion-lines-of
-code-later >.

2. Ganssle, Jack G. “A Guide to Code
Inspections.” Vers. 2.1. Feb. 2010
<www.ganssle.com/inspections.pdf>.

3. Moy, Yannick, Nikolaj Bjorner, and
Dave Sielaff. “Modular Bug-finding for
Integer Overflows in the Large: Sound,
Efficient, Bit-precise Static Analysis.”
Microsoft Research. 11 May 2009 <http://
research.microsoft.com/apps/pubs/
?id=80722>.

4. Chess, Brian, and Jacob West. Secure
Programming with Static Analysis. Chapter
3, “Static Analysis as Part of the Code
Review Process.” Upper Saddle River,
NJ: Addison-Wesley, 2007 <http://
media.techtarget.com/searchSoftware
Quality/downloads/Secure_Program
ming_CH03Chess.pdf>.

5. Taft, S. Tucker, and Robert B.K. Dewar.
“Making static analysis a part of code
review.” Embedded Computing Design. 16
June 2009 <http://embedded-compu
ting.com/making-static-analysis-part
-code-review>.

6. Moy, Yannick, and Angela Wallenburg.
Tokeneer: Beyond Formal Program Verifi-
cation. Proc. of the Embedded Real

Time Software and Systems Confer-
ence. Toulouse, France. 21 June 2010
<www.open-do.org/wp-content/up
loads/2010/05/erts2010.pdf>.

7. Ernst, Michael D. Static and Dynamic
Analysis: Synergy and Duality. Proc. of the
Workshop on Dynamic Analysis.
Portland, OR. 9 May 2003 <www.
cs.washington.edu/homes/mernst/
pubs/staticdynamic-woda2003.pdf>.

8. Parnas, David Lorge. “Really Rethink-
ing Formal Methods.” IEEE Computer
43.1 (Jan. 2010).

9. Souyris, Jean, et al. Formal Verification of
Avionics Software Products. Proc. of the
16th Annual Symposium on Formal
Methods. Eindhoven, The Netherlands.
2-6 Nov. 2009.

10. Beck, Kent, et al. “Manifesto for Agile
Software Development.” Feb. 2001
<www.agilemanifesto.org>.

11. Fisher, Gwyn. “When, Why and How
to Leverage Source Code Analysis.”
White Paper. 2007 <www.klocwork.
com/resources/white-paper/static
-analysis-when-why-how>.

12. Haddon-Cave, Charles. The Nimrod
Review: An Independent Review into the
Broader Issues Surrounding the Loss of the
RAF Nimrod MR2 Aircraft XV230 in
Afghanistan in 2006: Report. London:
TSO. 28 Oct. 2009 <http://ethics.
tamu.edu/guest/XV230/1025%5B
1%5D.pdf>.

About the Author

Yannick Moy, Ph.D., is
a senior software engi-
neer at AdaCore, where
he works on software
source code analyzers
CodePeer and SPARK,

mostly to detect bugs or verify
safety/security properties. Moy previ-
ously worked on source analyzers for
PolySpace (now The MathWorks),
INRIA Research Labs, Orange Labs,
and Microsoft Research. He holds
degrees in computer science: a doctorate
from Université de Paris-Sud, a master’s
from Stanford, and a bachelor’s from the
Ecole Polytechnique. Moy is also a Siebel
Scholar.

AdaCore
46 Rue d’Amsterdam
Paris, France 75009
Phone: +33.1.4970.6716
E-mail: moy@adacore.com

The defense industry—as evidenced by projects such as Software Assurance Metrics
and Tool Evaluation—is paying significant attention to static analysis tools. This arti-
cle helps DoD decision-makers and developers assess and select static analysis tools
that meet their safety and security requirements.

Software Defense Application

September/October 2010 www.stsc.hill.af.mil 9

Commercial software is not defect-free.
There are any common defects such

as improper input validation, as defined by
the Common Weakness Enumeration
(CWE), The MITRE Corporation’s list of
software weakness types [1]. These weak-
nesses can be readily exploited by unau-
thorized parties to alter the security prop-
erties and functionality of software for
malicious intent. MITRE, in collaboration
with the SANS Institute, publishes a year-
ly list of the Top 25 Most Dangerous
Programming Errors [2]. Such defects can
be accidentally or intentionally inserted
into software, and subsequent acquirers
and users have limited ways of finding and
correcting these defects to avoid exploita-
tion.

A report by application security com-
pany Veracode [3] draws on the analysis of
billions of lines of code and thousands of
applications that they have analyzed. Their
overall finding is that most software is very
insecure. Regardless of software origin, 58
percent of all applications submitted for
verification did not achieve an acceptable
security score for its assurance level upon
first submission to Veracode for testing.
Table 1 has the results (by source) of soft-
ware tested against the 2009 CWE/SANS
Institute Top 25 list [4]; it shows the per-
centage of submitted software that passed
the security test on the first trial. As 60 to
70 percent of the tested software failed
against easily remedied weaknesses, one of
Veracode’s findings was the lack of devel-
oper education and motivation on secure
coding.

Software Supply Chain
Complexity
There has been extensive analysis of sup-
ply chains for delivery of physical materi-
al, an analysis based on data collection
over decades of practice. The lack of an
equivalent base of practice and data col-
lection for software has severely limited
the analysis and response to software sup-
ply chain risks.

Most supply chains are not a single link
between an acquirer and a supplier. A more
complex supply chain (such as that shown
in Figure 1 on the next page) can involve a
combination of internal development, out-
sourced development, multiple commercial
suppliers, and legacy system usage. The
composite system inherits the risk of a soft-
ware assurance (SwA) failure at any point in
such a supply chain. The acquirer and the
primary supplier have limited visibility of
the capabilities of deeply-nested sub-suppli-
ers. Supply chain risks can be reduced but
not eliminated. Once software is deployed,
residual supply chain risk identification and
mitigation become a continuing responsibil-
ity for the acquiring organization.

Software supply chain risk considera-
tions must continue in sustainment. An
assessment done as part of the initial
acquisition for a commercial component
is valid only at that time. A commercial
software component can easily be
deployed for five years or longer. During
that period, the following can happen:
• New attack techniques and software

weaknesses appear.
• Changes in acquirer usage activate

product features with weaknesses that
have not been considered in earlier
assessments.

• A sequence of product upgrades that
add features or change design can
invalidate a risk assessment.

• Changes occur in the risk factors used
in initial vendor and product assess-
ment (e.g., corporate merger, subcon-
tractors, corporate policies and staff
training, or in the corporate software
development process).

• Product criticality increases with new
or expanded usage.

Mitigating Common Software
Weaknesses in the Supply Chain
Addressing the appearance of common
software weaknesses introduced in a sup-
ply chain requires knowing where to look
and what to look for. Discussions of sys-
tem security often include firewalls,

authentication issues (such as password
strength), or authorization mechanisms
(such as role-based access controls).
Application security has often been
ignored, in part because of the faulty
assumption that firewalls and other
perimeter defenses can protect the func-
tional code. The problem is further com-
pounded as application developers with-
out specific security training are typically
unaware of the ways their software, while
meeting functional requirements, could be
compromised. Security software—such as
a firewall or a password management
component—is usually subject to an inde-
pendent security assessment that consid-
ers the development history as well as the
design and operational context. There is
no equivalent effort applied to the securi-
ty of application components.

The pervasiveness of easily remedied
weaknesses (as observed by Veracode)
provides a simple attack vector that is eas-
ily exploited. A first step should be the
elimination of the most pervasive com-
mon weaknesses, particularly from
acquired application software.

There is currently insufficient practice
data to identify best practices that could
be required of suppliers, but our observa-
tion of current practice suggests activities
that can improve confidence in a software
supply chain [5].

Security for application software is get-
ting increased commercial attention. In
2006, Microsoft established their Security
Development Lifecycle (SDL), which
served as a starting point for other efforts
[6]. Today, more than 25 large-scale appli-
cation software security initiatives are

Considering Software Supply Chain Risks©

As outsourcing and commercial product use increase, supply chain risk becomes a growing concern for software acquisitions.
Hardware supply chain risks include manufacturing and delivery disruptions and the substitution of counterfeit or substan-
dard components. Software supply chain risks, usually during development, include third-party product tampering or the intro-
duction of exploitable software defects. This article identifies several current practices that can be incorporated in an acquisi-
tion to reduce those risks.

Dr. Robert J. Ellison and Dr. Carol Woody
SEI

Software Source Acceptable

Commercial 38%

Internally Developed 30%

Open Source 39%

Outsourced 6%

Table 1: CWE/SANS Top 25 Compliance

© Copyright 2010 by Carnegie Mellon University.

Game-Changing Tools and Practices

under way in organizations as diverse as
multinational banks, independent software
vendors, the U.S. Air Force, and embed-
ded systems manufacturers. The Software
Assurance Forum for Excellence in Code,
an industry-led non-profit organization
that focuses on the advancement of effec-
tive SwA methods, published a report on
secure software development [7]. In 2009,
the first version of the Building Security
In (BSI) Maturity Model [8] (BSIMM) was
published1. The Software Assurance
Processes and Practices Working Group2

has released several relevant documents,
including [9], which is linked to the
Capability Maturity Model Integration for
Development. In addition, the Open Web
Applications Security Project has devel-
oped a Software Assurance Maturity
Model for software security [10]. Finally,
the BSI website at <https://buildsecurity
in.us-cert.gov> contains a growing set of
reference materials on software security
practices.

The emerging collection of secure
development techniques arose from
addressing specific software weaknesses.
The following section considers three
classes of software weaknesses as a way to
explain the criticality of software design
and coding mistakes.

Common Weaknesses in Applications
Three common weaknesses—cross-site
scripting (XSS), SQL injection, and cross-
site request forgery (CSRF)—appear in
the top four of the 2010 CWE/SANS list.
Topping the list is XSS, which can com-
promise a user’s computer when they view
a page on what they consider to be a trust-
ed site. Next is SQL injection, an attacker
technique that can compromise applica-

tions that query databases (e.g., where
credit card data has been illegally down-
loaded). Ranked fourth is CSRF, where an
attacker can masquerade as a trusted user
of a web server only to upload malicious
data to that server.

XSS
Web traffic consists of a mixture of data
and script in HTML. With XSS, the attack-
ers objective is to have users retrieve a Web
page from your server that contains mali-
cious code, say in JavaScript that the attack-
er wrote. The user trusts your server, and
their browser will execute the malicious
code as if it came from you. This vulnera-
bility is a design error that allows the
attacker to get their input into your server.

SQL Injection
Weaknesses are often associated with mal-
formed input. The vulnerability risk is
high when an application incorporates
user input into a service request. Assume
we have an application that displays an
employee name and salary after a user
enters an employee ID. If a user enters
48983, then a database query is created to
retrieve all entries that satisfy the relation
ID = 48983. An attacker’s objective is to
see if the input routine will accept values
that might provide additional information.
The classic SQL injection example would
be equivalent to the input of 48983 or
(1 = 1). If this input is accepted, then the
query returns all entries where the
ID = 48983 or where 1 = 1. As the latter
is always true, all employee records are
returned.

CSRF
A CSRF is sort of the reverse of an XSS.

An attacker compromises a user so that
the attacker can masquerade as that user,
accessing their Web site and making
requests. A CSRF that inserts data—com-
bined with XSS to distribute that data—
can lead to extensive and devastating con-
sequences (e.g., XSS worms that spread
throughout very large Web sites in a mat-
ter of minutes).

Emerging Secure
Development Practices
Two types of analysis—one focused on
understanding and controlling the soft-
ware attack surface and the other focused
on understanding potential threats (threat
modeling)—are good examples of SwA
practices that can be incorporated early in
the development life cycle and that help
make supply chain security risk manage-
ment more tractable. A software attack
surface is a way of characterizing potential
attack vectors for compromising applica-
tion code. Threat modeling characterizes
which aspects of the attack surface are
most at risk for exploitation. These con-
cepts are useful during development,
deployment, and system operation. They
help guide what information must be
gathered and how it can be best used to
help prioritize and mitigate (if not elimi-
nate) supply chain security risks.

Attack Surface Analysis
An approach to managing the scope of the
software security analysis arose from prag-
matic considerations. SDL developer Mi-
chael Howard observed that attacks on
Windows systems typically exploited a
short list of features such as open ports,
services running with total access control,
dynamically generated Web pages, and
weak access controls [11]. Instead of
counting bugs in the code or the number
of vulnerability reports, Howard proposed
to measure the attack opportunities, a
weighted sum of the exploitable features.

An attack-surface metric is used to
compare multiple versions or configura-
tions of a single system. It cannot be used
to compare different systems.

Howard’s intuitive description of an
attack surface led to a more formal defin-
ition (in [12]), with the following dimen-
sions:
• Targets. Data resources or processes

desired by an attacker; for example, a
process could be a Web browser, Web
server, firewall, mail client, database
server, etc.

• Enablers. The other processes and
data resources used by an attacker,
such as Web services, a mail client, or

Program
Office

Prime
Contractor

Reuse
Legacy
Software

Other
Programs

Outsource

Contractor

Supplier

Open-Source
Software

Supplier

Acquire

Develop
In-house

Reuse

Outsource

? ? ?
?

Acquire

COTS
U.S.

Foreign
Location

Foreign
Developers

Offshore

Develop
In-house

Contractor

?

?

?

Supplier

U.S.

Global

Foreign

?

?

?

Figure 1: Software Supply Chain

10 CROSSTALK The Journal of Defense Software Engineering September/October 2010

Considering Software Supply Chain Risks

September/October 2010 www.stsc.hill.af.mil 11

having JavaScript or ActiveX enabled.
Mechanisms such as JavaScript or
ActiveX give the attacker a way to exe-
cute their own code.

• Channels and Protocols (Inputs and
Outputs). These are used by an attack-
er to obtain control over targets.

• Access Rights. Control is subject to
constraints imposed by access rights.
An attack surface analysis reduces sup-

ply chain security risk in several ways:
• A system with more targets, more

enablers, more channels, or more gen-
erous access rights provides more
opportunities to the attacker. An
acquisition process designed to miti-
gate supply chain security risks should
include requirements for a reduced
and documented attack surface.

• The use of product features influences
the attack surface for that acquirer.
The attack surface can define the op-
portunities for attacks when usage
changes.

• It helps to focus attention on the code
that is of greatest concern for security
risk. If the code is well partitioned so
that features are isolated, reducing the
attack surface can also reduce the code
that has to be evaluated for threats and
weaknesses.

• For each element of a documented
attack surface, known weaknesses and
attack patterns can be used to mitigate
risks.

• The attack surface supports deploy-
ment, as it helps identify attack oppor-
tunities that could require additional
mitigation.

Threat Modeling
Threat modeling is a part of Microsoft’s
SDL [6, 13], but it is a general purpose
activity that can easily be incorporated
into any development life cycle. Identified
as one of 10 low-cost suggestions that
improve enterprise security [14], threat
modeling:
• Provides a business justification for

security by mapping threats to busi-
ness assets.

• Enables a thoughtful conversation
around risk and trade-offs during soft-
ware development in an objective,
quantifiable way.

• Encourages a logical thought process
in determining an application’s security
model.

• Lets architects and developers work
together to understand threats at
design time and build security in,
instead of hoping that the quality
assurance team can discover those
threats later in the life cycle.

• Helps business analysts understand
and create traceable security require-
ments.
The approach used in threat modeling

is applicable to other risk assessment
methodologies. Data flows or usage scenar-
ios are identified along with critical business
assets. A detailed walkthrough of a data
flow considers the deployed configuration
and expected usage, identifies external
dependencies (such as required services),
analyzes the interfaces to other compo-
nents (inputs and outputs), and documents
security assumptions and trust boundaries
(such as the security control points). The
usage scenarios can support business justi-
fications and link threats to the criticality of
business assets. Such a walkthrough can
consider adversary motivations (such as the
criticality of the data being handled), in
addition to the technical risks.

Fuzz Testing
Increased attention on secure application
software components has influenced secu-
rity testing practices. All of the organiza-
tions contributing to the BSIMM do pen-
etration testing, but there is increasing use
of fuzz testing. Fuzz testing creates mal-
formed data and observes application be-
havior when such data is consumed. An
unexpected application failure, due to mal-
formed input, is a reliability bug and pos-
sibly a security bug. Fuzz testing has been
used effectively by attackers to find weak-
nesses. For example, in 2009, a fuzz-test-
ing tool generated XML-formatted data
that revealed an exploitable defect in wide-
ly used XML libraries. At Microsoft, about
20 to 25 percent of security bugs in
code—not subject to secure coding prac-
tices—are found via fuzz testing [6].

Using Secure Development
Practices in the Software
Supply Chain
Let’s see how our examples of secure
development practices could be applied to
the acquisitions of commercial software
components. Inputs to that analysis include
organization-specific information and
available data on vendors and products.
The key questions are: Has the developer con-

sidered how the software could be exploited? and
Has behavior under unexpected or adverse condi-
tions been analyzed? The evidence to answer
those questions can be drawn from coding
practices, static code analysis, common
weaknesses analysis, attack patterns analy-
sis, threat/vulnerability analysis, software
security testing, and dynamic testing.

Techniques such as attack surface
analysis, threat modeling, and fuzz testing
could play multiple roles in commercial
software acquisition.

Assume a commercial component is
part of a larger contracted system devel-
opment acquisition. In this instance, the
commercial components are selected by
the primary contractor. Supply chain
analysis could include examining:
• The attack opportunities the compo-

nent exposes in terms of features and
implementation (component develop-
er, prime contractor, or independently
developed).

• The identification and mitigation of
risks by the component developer (e.g.,
supplier fuzz testing, supplier threat
modeling [or the equivalent], indepen-
dent assessment, contractor fuzz test-
ing, and acquirer fuzz testing as part of
acceptance and continued for product
upgrades during sustainment).

• The criticality of risks for the planned
usage (contractor threat modeling as a
basis for discussions with the acquirer).

• Risk mitigations (acquirer trade-off
decisions with respect to functionality,
costs, and acceptable risks based on
contractor threat modeling).
Also note that development artifacts

should include documented supply chain
and threat-modeling analysis provided by
the contractor to the acquirer.

Acquirer Responsibilities
Supply chain risks continue during sus-
tainment. A documented attack surface
and threat-modeling analysis—provided
by a vendor—would influence the acquir-
er’s future responses to changes in usage,
threats, or supporting technologies, and
should be incorporated into contracting
efforts done during sustainment.

While part of the responsibility for

Supply chain risks are dangerous for software acquired and utilized by the defense indus-
try. This article examines significant supply chain risks, such as the inadvertent introduc-
tion of exploitable software defects during development and third-party product tamper-
ing. This article squarely puts responsibility on the acquirer for avoiding supply chain prob-
lems, and provides several techniques that will assist defense industry software acquirers in
focusing their risk mitigation. These methods will improve software quality, in turn reduc-
ing expenses—especially in regards to exploitation recovery and system patching.

Software Defense Application

Game-Changing Tools and Practices

12 CROSSTALK The Journal of Defense Software Engineering September/October 2010

supply chain assurance can be outsourced
to a prime contractor, the supply chain
risks for individual systems have to be
aggregated. For all deployed systems, the
responsibility for the aggregation of sup-
ply chain risks falls to the acquirer.
Software acquisition has grown from the
delivery of standalone systems to the pro-
visioning of technical capabilities integrat-
ed within a larger system-of-systems (SoS)
context. This integration extends the criti-
cality of supply chain risk analysis.
Software security defects in any of the
products or services are a potential supply
chain security risk to all SoS participants.
A set of one-off approaches for individ-
ual system supply chain assurance creates
a nearly impossible task for an SoS.

Summary
A software supply chain objective should
be to incorporate the identification and
mitigation of likely design, coding, and
technology-specific weaknesses into the
development life cycle. This article pro-
vides an analysis of three practices that
support that objective. Mitigations of
items on a CWE/SANS Top 25 list are
usually linked to detailed design or coding
practices, but mitigations are also associat-
ed with risk analysis, requirements, archi-
tecture, and testing. This article—and
sources like the BSI Web site—provide a
foundation for establishing a full life-cycle
context for security improvement.u

References
1. The MITRE Corporation. Common

Weakness Enumeration. 17 May 2010
<http://cwe.mitre.org>.

2. The MITRE Corporation. “2010
CWE/SANS Top 25 Most Dangerous
Programming Errors.” Common Weak-
ness Enumeration. 5 Apr. 2010 <http://
cwe.mitre.org/top25>.

3. Veracode, Inc. State of Software Security
Report. Vol. 1. 1 Mar. 2010 <www.vera
code.com/reports/index.html>.

4. The MITRE Corporation. “2009 CWE/
SANS Top 25 Most Dangerous Pro-
gramming Errors.” Common Weakness
Enumeration 29 Oct. 2009 <http://
cwe.mitre.org/top25/archive/2009/
2009_cwe_sans_top25.html>.

5. Ellison, Robert, et al. Evaluating and
Mitigating Software Supply Chain Security
Risks. SEI, Carnegie Mellon Universi-
ty. Technical Note CMU/SEI-2010-
TN-016. May 2010 <www.sei.cmu.
edu/reports/10tn016.pdf>.

6. Howard, Michael, and Steve Lipner.
The Security Development Lifecycle.
Redmond, WA: Microsoft Press, 2006.

7. Bitz, Gunter, et al. Fundamental Practices

for Secure Software Development: A Guide
to the Most Effective Secure Development
Practices in Use Today. 8 Oct. 2008
<www.safecode.org/publications/SA
FECode_Dev_Practices1008.pdf >.

8. McGraw, Gary, Brian Chess, and
Sammy Migues. The Building Security In
Maturity Model – BSIMM2. 2010
<www.bsi-mm.com>.

9. DHS. Build Security In – Software
Assurance. “Process Reference Model
for Assurance Mapping To CMMI-
DEV V1.2.” 23 June 2008 <http://
buildsecurityin.us-cert.gov/swa/
downloads/PRM_for_Assurance_to_
CMMI.pdf>.

10. The Open Web Application Security
Project. “Software Assurance Maturity
Model.” 5 May 2009 <www.owasp.
org/index.php/Category:Software_As
surance_Maturity_Model>.

11. Howard, Michael. “Fending Off
Future Attacks by Reducing Attack
Surface.” Microsoft Developer Network. 4
Feb. 2003 <http://msdn.microsoft.
com/en-us/library/ms972812.aspx>.

12. Howard, Michael, Jon Pincus, and
Jeannette M. Wing. Measuring Relative
Attack Surfaces. 2003 <www.cs.cmu.
edu/~wing/publications/Howard

-Wing03.pdf>.
13. Swiderski, Frank, and Window Snyder.

Threat Modeling. Redmond, WA: Micro-
soft Press, 2004.

14. McGovern, James, and Gunnar
Peterson. “10 Quick, Dirty, and Cheap
Things to Improve Enterprise Securi-
ty.” Security & Privacy 8.2 (Mar.-Apr.
2010): 83-85.

Notes
1. BSIMM was created from a survey of

nine organizations with active software
security initiatives considered to be the
most advanced. The nine organiza-
tions were drawn from three sectors:
financial services (4), independent
software vendors (3), and technology
firms (2). Those companies among the
nine who agreed to be identified
include Adobe, The Depository Trust
& Clearing Corporation, EMC,
Google, Microsoft, Qualcomm, and
Wells Fargo.

2. The group operates under the spon-
sorship of the DHS’s National Cyber
Security Division. See <https://build
securityin.us-cert.gov/swa/procwg.
html>.

About the Authors

Robert J. Ellison, Ph.D.,
is a member of the Sur-
vivable Systems Engi-
neering Team within the
Community Emergency
Response Team Program

at the SEI, and has served in a number of
technical and management roles. Ellison
regularly participates in the evaluation of
software architectures and contributes
from the perspective of security and reli-
ability measures. His research draws on
that experience to integrate security issues
into the overall architecture design
process. Ellison is currently exploring rea-
soning frameworks development to help
architects select and refine design tactics
to mitigate the impact of a class of cyber-
attacks.

SEI
Carnegie Mellon University
4500 Fifth AVE
Pittsburgh, PA 15213-3890
Phone: (412) 268-7705
Fax: (412) 268-5758
E-mail: ellison@sei.cmu.edu

Carol Woody, Ph.D., is
a senior member of the
technical staff at the SEI.
She leads the acquisition
and development prac-
tices and metrics team,

addressing research in four critical areas
for security in software: security require-
ments, cyber assurance, the software
supply chain, and measurement. She is
experienced in all aspects of software
and systems planning, acquisition,
design, development, and implementa-
tion in large complex organizations.
Woody is a senior member of the
Association for Computing Machinery
and the IEEE.

SEI
Carnegie Mellon University
4500 Fifth AVE
Pittsburgh, PA 5213-3890
Phone: (412) 268-9137
Fax: (412) 268-5758
E-mail: cwoody@cert.org

September/October 2010 www.stsc.hill.af.mil 13

One USNA requirement (for comput-
er science or IT undergraduates) is a

capstone project. Students—in groups of
three or four on a project of their choos-
ing—must find a customer, define require-
ments, and meet key milestone dates in
providing a software or system artifact.
Projects require about 150 hours per per-
son and must be completed and fully doc-
umented within the 15-week semester.

Over the past two years, there has been
increased student motivation to choose IA-
related projects. Like software or systems
engineering projects in other fields, stu-
dents found it especially challenging to
define customer requirements and meet
expectations and milestones. Faculty use
these challenges as learning opportunities
by allowing students to make their own
project decisions, even if poor decision-
making leads to a mid-project failure,
because these failures will teach the stu-
dents much more than a perfectly executed
plan. Students found that taking on pro-
jects in the IA field of study created addi-
tional challenges in subject matter knowl-
edge, system design, and implementation.

Team 1: Training Database
with Multi-Level Views
The first project required students to
develop a training and personnel database
that provides proper authentication at an
undetermined number of organizational
or data visibility levels and minimizes rep-
etition of data entry by using data nor-
malization. This group found the require-
ments-gathering process to be fairly
straightforward, as the customer under-
stood the concept of a database with mul-
tiple levels of security. These requirements
included allowing designated individuals
to input and view multiple training cours-
es as well as providing status reports to
higher-level managers.

This team designed the software with
an initial authentication scheme and then
created a secure session that verified cre-
dentials before displaying data. Read, write,
and modify rules were given based on data-

base views, combining multiple tables in
various views. The database administrator
programmed these views, which had the
capability of providing granular permis-
sions. Originally, the team planned to
hard-code permissions as read and modify
for all levels higher than the supervisor,
meeting the customer requirements.
However, after initial design review, they
realized that these requirements may later
change; therefore, the team redesigned
access control by giving the database
administrator the ability to set visibility by
level or by allowing the overriding of per-
missions. This additional flexibility added
the capability to produce a report by giv-
ing full permissions by person, group, and
supervisory levels, as well as highlighting
all overridden permissions.

Team 2: Emergency
Notification System
The next project1 required an undeter-
mined number of individuals and organi-
zations to receive emergency notification
of events based on input from city, state,
nationwide, or worldwide sensors. Some
events only need to be seen by the local
emergency services while others required
visibility for governors, the military, or
federal officials. Some events are simply
logged, while higher-priority events may
require confirmation from the appropriate
source and the ability to forward data to
higher levels for additional action.

This team also had a challenge with the
design and implementation of permission
and authentication methods. Unlike the
first group, however, these students did
not initially incorporate authentication at
the design phase. While they understood
the requirements to have multiple levels of
reporting based on the users’ position and
authentication, the team decided to put
this off until the implementation phase.
Because specifying the design is arguably
the most difficult step in the software
engineering process, many students simply
want to get started with the implementa-
tion phase. These students started imple-

menting code based on a poorly elaborat-
ed design. They split up work, each build-
ing separate Web pages for a type of
emergency reporting required. This result-
ed in disparate pages that looked and
operated differently and had no means of
accepting dynamic changes. In addition,
the team realized that they designed
authentication by page or view rather than
providing a consolidated, centralized
means of authentication and a data per-
mission schema.

Though reluctant to scrap six weeks of
work, the team ultimately chose to begin
from scratch and start again at the require-
ments phase. At this point, they developed
formal interview questions for the cus-
tomer and wrote a concise statement that
encompassed all requirements. They then
took each sentence or phrase and turned it
into a well-defined requirement placed in a
requirements implementation and testing
matrix. From this matrix, the students cre-
ated a design that incorporated every
requirement. These requirements speci-
fied authentication and visibility schemas
for each view. After further analysis, the
team was able to design a method for cen-
tralized authentication and visibility with a
small change to the database schema.

The team was able to re-accomplish
requirements analysis and design in only a
week, and was able to implement the
backend database in another week. The
team admitted that they had their doubts
about whether they could finish the pro-
ject on time, but were surprised to see the
ease of implementing and testing well-
defined requirements and design.

Team 3: Cybersecurity
Competition Framework
This project—stemmed from a Polytech-
nic Institute of New York University
competition—had students from numer-
ous schools downloading various cyberse-
curity and digital forensics exercises that
were timed and graded for accuracy and
completeness.

USNA students felt that they could

Information Assurance Applications in
Software Engineering Projects

Four recent capstone projects by students in the U.S. Naval Academy’s (USNA) Department of Computer Science offer
some interesting insights into methodologies for information assurance (IA). This article looks at the tasks and challenges of
each project and consolidates the experiences into lessons learned for designing and implementing software or systems that incor-
porate the IA concepts of confidentiality, data integrity, authentication, and system availability [1].

Lt. Col. Thomas A. Augustine (Ret.) and Dr. Lori L. DeLooze
United States Naval Academy

Game-Changing Tools and Practices

14 CROSSTALK The Journal of Defense Software Engineering September/October 2010

improve the competition by designing a
better interface for serving and grading
the cyber challenges. As such, they set out
to create a Web-based software framework
that served various scenarios and received
team responses for an IA competition.
Requirements included authentication and
proper visibility of scenarios for an unde-
termined number of teams, competition
referees, scenarios, and team responses.
Additionally, since they were creating a
framework for a hacking competition,
they had to design a system that main-
tained the integrity and availability of the
data despite possible hijack attempts from
less scrupulous teams.

In consultation with the faculty, stu-
dents chose to both build the framework
that was to serve the cyber challenges and
create individual challenges as a proof of
concept for their serving framework. As
such, they assigned two team members to
build the framework, while two others
independently built challenges. The re-
quirements called for a broad range of
possible cyber challenges including: digital
forensics of disk images, analysis of net-
work traffic, analysis of software code vul-
nerabilities, and the identification and mit-
igation of operating system and applica-
tions security configurations.

Like the others, this team started by
gaining detailed requirements for which
protection against common software vul-
nerabilities was key. They quickly realized
that system security had to be built into
the design process. With this additional
requirement, they realized the design
would be the most difficult aspect of their
project and allocated additional time for
this milestone. Before designing in securi-
ty, the team—both to protect their infra-
structure and to develop challenges for
the competition framework—had to
understand how hackers use vulnerabili-
ties to get into systems. Each student
chose to specialize in specific network,
operating system, application, and data-
base security techniques. To better under-
stand these techniques, students reviewed
previous coursework, examined DoD and
National Security Agency (NSA) security
guides2, and interviewed network security
administrators. They found that the most
difficult portion of securing an applica-
tion against hackers is not the actual
implementation of a specific configura-
tion or fix, but in thinking like the hacker
and predicting how people will use poten-
tial vulnerabilities to disrupt operations.

Though the team found implementa-
tion of the database and associated views
to be relatively trivial, they found the doc-
umentation process to be challenging.

Documentation had to include reasons for
their design decisions and security set-
tings, so that future maintainers could add
features but still capitalize on the security
features built into the framework.

Students noted that there was great
value in understanding and implementing
the security guides. While their IA course
had many hands-on experiences, it was
only through the course of this project
that they realized the complexity of secur-
ing applications.

Team 4: Cyber Defense
Exercise
In this project, students were required to
design and implement a complete network
based on an intricate set of constraints.
After implementation, students had to
operate and defend this network against
NSA experts posing as attackers. Called
the Cyber Defense Exercise [2], the com-
petition is modified annually to increase
the cybersecurity skills required of student
participants. Several years ago, the focus
was on active defense, while the more
recent exercises have focused on the trade-
offs that need to be made between limited
resources, operations of a network, securi-
ty, time, and expertise required.

Students were provided with a 40-page
directive spelling out the rules of the com-
petition along with listing the network ser-
vices that must be provided during a week-
long exercise (and the points to be deduct-
ed if these services were either not opera-
tional or had security compromises).
Essentially, students were given a very
detailed requirements document with total
freedom to produce any design. Though
students were asked to turn in their designs,
referees only verified that they met bud-
getary constraints. Cross-referencing re-
quirements to design was a task left totally
to each competing student group.

Though students were not required to
gather requirements from an external cus-
tomer, they did have to interpret the direc-
tive and design a complete network given
the assumptions, constraints, and require-
ments. Students were challenged with cre-
ating a design that could provide users
with a number of services, such as e-mail,
chat, Web, databases, file servers, and mis-
sion-specific applications. This design had
to remain operational while withstanding
attacks from NSA network experts posing
as hackers.

Student team members had taken both
networking and IA courses, yet there was
still a great deal of knowledge needed for
the secure design of an operational net-
work. Students augmented their knowledge

of secure design with NSA security guides,
Defense Information Systems Agency
security checklists3, and various security-
specific books and references. Despite
these numerous references, students were
still challenged with consolidating this
information and meeting the required con-
straints. Perhaps the students’ greatest chal-
lenge was verifying the security of their
design and implementation, which was
done creating a test environment that mim-
icked the actions of the attackers. The team
used security testing tools like the
Metasploit Framework (which provides
pre-packaged exploits) to test if the system
is vulnerable to attack. Students also used
other sites like <www.milw0rm.com> to
test their system against additional poten-
tial exploits; however, the use of these
more advanced techniques required great
experience and training.

In addition to the testing of security,
students had challenges in ensuring that the
tightened security did not impact network
operations. The students found this to be a
great challenge. This balance between con-
tinued operations versus increased security
involves business case and risk analysis, a
skill that generally requires expertise in
both network security and the mission area
supported by the system.

Lessons Learned
Through these student projects, we can
learn a number of security-related lessons
about gaining requirements, as well as
designing and implementing IA-focused
systems or software.

Design Authentication and a Data
Permissions Schema Early
Nearly all application or system develop-
ment requires authentication methods.
Students found that the best results were
achieved by planning for both position-
level and personal-level authentication for
data visibility during the design phase.
Even when requirements only call for sim-
ple authentication, customers tend to ask
for a layered authentication by data type,
organizational position, or data view.
Rework tends to be extensive and time-
consuming. Planning for authentication in
the design phase of systems will likely save
time and resources in the long run.

Use Security Guides
Students found that despite more than
100 classroom hours spent learning about
networks and IA techniques, additional
application-specific information is re-
quired when designing and developing IA-
focused applications or systems. The NSA
and the Defense Information Systems

Information Assurance Applications in Software Engineering Projects

September/October 2010 www.stsc.hill.af.mil 15

Agency produce security guides for vari-
ous operating systems and applications.
These guides have been produced and
tested by numerous experts and can com-
plement the developers’ knowledge to
meet design specifications for applications
requiring a cybersecurity focus.

Test Applications Against Known
Security Frameworks
Relatively few software or system develop-
ers have the skills required to test system
designs and implementations against well-
known attacks using exploits in systems
availability, data confidentiality, and
integrity. Rather than recreating exploits
that may require a greater effort than actu-
ally securing the system or application,
system testers are encouraged to use exist-
ing security testing frameworks. While
these testing frameworks can demonstrate
potential holes in security, they should be
used in concert with secure programming
techniques, design, as well as documented
and tested security techniques.

Plan for Regression Testing
Students working on these projects noted
the need for an updated, descriptive test
plan and follow-on regression software
testing. This is true in any software appli-
cation, but tends to be highlighted in secu-
rity-focused applications. Security en-
hancements are rarely made in a single
place. Instead, these changes are made in
the operating system, database framework,
application, and various configuration
files. Students found that a single change
in any one of these areas forced regres-
sion errors that were very difficult to
detect without a well-formulated and
implemented test plan. Students learned
that this testing needs to be done as
changes are made, or it becomes necessary
to back out entire blocks of changes to
find the root cause of bugs.

Manage Security Expectations
Customers generally understand those
requirements and expected outcomes that
are directly related to their subject matter
expertise. Through these projects, stu-
dents noted that customers expect an
application to be secure, but do not under-
stand the resource costs or operations
tradeoffs required to make this a reality.
Students noted the need to manage cus-
tomer security expectations in the require-
ments phase and later in the design phase.
Students believed that the best way to
manage security requirements and associ-
ated customer expectations was to provide
a security, operations, and resource matrix
that cross-references security trade-offs.

Understand Security Impact on
Operations
Even after managing customers’ security
expectations and implementing security
(expected to exceed requirements), stu-
dents found that users can have the great-
est unintended impact on security. In test-
ing these applications with actual users (as
they would use them), students found that
users will bypass security, in turn impairing
operations or user-expected procedures.
These user-caused workarounds can
reduce security effectiveness and give the
application owner a false sense of securi-
ty. Students learned that for security con-
trols to remain effective, designers must
understand existing user processes and
procedures—and then design security
architectures around these or build them
in a user-friendly alternative.

Document Reasons for Security
Architecture
Like many software professionals, students
found project documentation among the
most challenging processes. As a learning
tool, students were required to make
changes to projects based on documenta-
tion that either they created or (in some
cases) was created by other student teams.
Though effective documentation is always
challenging, students found this difficulty
was magnified when trying to modify secu-
rity architectures. Ultimately, they noted
that understanding the security architecture

documentation is not enough to effectively
make changes to security without impact-
ing operations or functionality. Instead, stu-
dents found it easier to effectively manage
security changes when they had documen-
tation that also explained the reason for
decisions, limitations in technology, the
state of the intended operating system’s
security, and operational or process trade-
offs associated with security decisions.u

References
1. Maconachy, W. Victor, et al. A Model for

Information Assurance: An Integrated
Approach. Proc. of the 2001 Workshop
on Information Assurance and Secur-
ity. West Point, N.Y. 5-6 June 2001.

2. Augustine, Thomas, and Ronald C.
Dodge, Jr. Cyber Defense Exercise:
Meeting Learning Objectives thru Compe-
tition. Proc. of the 10th Colloquium for
Information Systems Security Edu-
cation. Adelphi, MD: 61–67.

Notes
1. This project was inspired by the 2007

film “Live Free or Die Hard,” where
terrorists took control of emergency
services, the electric grid, and city-wide
traffic signals.

2. For access to these guides, visit:
<www.nsa.gov/ia/guidance/security
_configuration_guides>.

3. See <http://iase.disa.mil/stigs/check
list>.

Through the lessons learned by USNA students, this article is a refresher for defense
software developers on why it is important to design authentication and data permis-
sions early, follow security guides, use existing techniques for security testing, do
regression testing as changes are made, ensure that customers understand security
costs and tradeoffs, recognize the unintended impact of users on security, and thor-
oughly document all elements of security architecture.

Software Defense Application

About the Authors

Lt. Col. Thomas A.
Augustine, D.Sc., is
retired from the United
States Air Force after a
career in communica-
tions and information.
His most recent assign-

ment was as an assistant professor of
computer science at the USNA, special-
izing in networks and IA.

E-mail: thomas.augustine@
hotmail.com

Lori L. DeLooze, Ph.D.,
retired from the United
States Navy as a career
information professional.
She is currently an assis-
tant professor of com-
puter science at the

USNA, specializing in software engineer-
ing and IA.

572 Holloway RD, Stop 9F
Annapolis, MD 21402
Phone: (410) 293-6820
E-mail: delooze@usna.edu

16 CROSSTALK The Journal of Defense Software Engineering September/October 2010

Many vulnerabilities in today’s soft-
ware products are rehashes of past

vulnerabilities. Developers are often un-
aware of past problems or they are unable
to keep track of vulnerabilities that others
have reported and solved. Interestingly,
this is not because of a scarcity of infor-
mation. In fact, a plethora of information
about past vulnerabilities is available to
developers. Most software development
projects dedicate some effort to docu-
menting, tracking, and studying reported
vulnerabilities. This information is record-
ed in project repositories, such as change
logs in source code version control sys-
tems, bug tracking system entries, and
mailing list communication threads. As
these repositories were created for differ-
ent purposes, it is not straightforward
enough to extract useful vulnerability-
related information. In large projects,
these repositories store vast amounts of
data, oftentimes burying the relevant
information. Therefore, efforts to sum-
marize lessons learned from past vulnera-
bilities in a software project are essentially
non-existent. In the face of growing soft-
ware complexity, it is even more critical to
improve the mental model of the software
developer to sense the possibility of vul-
nerability.

The CWE standardization effort pro-
vides a unified and measureable set of
software weaknesses for use in software
assurance activities [1]. CWE is a commu-
nity-driven and continuously evolving tax-
onomy of software weaknesses. Accor-
ding to [1], the CWE vision is twofold,
enabling:
• A more effective discussion, descrip-

tion, selection, and use of software
security tools and services that can
find weaknesses in source code and
operational systems.

• A better understanding and manage-
ment of software weaknesses related
to architecture and design.

However, the CWE is often compared to
a kitchen sink, as it aggregates weakness
categories from many different vulnerabil-

ity taxonomies, software technologies and
products, and categorization perspectives.
While the CWE is comprehensive, using
its highly tangled web of weakness cate-
gories is a daunting task for stakeholders
in the software development life cycle
(SDLC).

The unique characteristics of a weak-
ness—its preceding design or program-
mer errors, resources/locations that the
weakness occurs in, and the consequences
that follow the weakness (such as unau-
thorized information disclosure, modifica-
tion, or destruction)—are either expressed
together within a single CWE category or
spread across multiple categories. Such
complexity makes it difficult to trace the
information expressed in the CWE to the
information about a discovered vulnera-
bility in multiple project-specific sources
(such as a log of code changes, source
code differences, developer mailing list
discussions around bugs, bug-tracking
databases, vulnerability databases, and
public media releases). Therefore, to facil-
itate CWE use in the study of vulnerabili-
ties, we have developed easy-to-under-
stand templates for each conceptually dis-
tinct weakness type. This template can
then be readily applied to aggregate and
study project-specific vulnerability infor-
mation from source code repositories.

Each template is a collection of con-
cepts related to a single weakness type.
The concepts are identified by extracting
and distilling information from all relevant
CWE categories for a particular weakness
type. Since the concepts in the templates
provide meaning to the usage of certain
words and sentences that describe vulner-
ability information, we call them semantic
templates.

While the CWE is a collection of
abstract categories, the Common
Vulnerability Enumeration (CVE) is an
ever-growing compilation of actual
known information security vulnerabilities
and exposures, as reported by software
development organizations, coordination
centers, developers, and individuals at

large. CVE assigns a common standard
identifier for each discovered vulnerability
to enable data exchange between security
products and provide a baseline for evalu-
ating coverage of tools and services [2].

In this article, we outline the process
of building a semantic template to study
the injection software weakness type. In
recent times, injection is the single most
exploited weakness type. It occurs upon
failure to adequately filter user-controlled
input data for syntax that can have unin-
tended consequences on the program exe-
cution. As stated in CWE-74, a distin-
guishing characteristic of the injection
weakness is that “the execution of the
process may be altered by sending code in
through legitimate data channels, using no
other mechanism” [3]. For example, con-
sider a Web application that accepts user
input to dynamically construct a Web page
that is instantly accessible to other users.
Web blogs, guest books, user comments,
and discussion pages typically provide
such functionality. If the user input that
gets included in the dynamic construction
of a Web page is not appropriately sani-
tized for HTML and other executable syn-
tax (e.g., JavaScript), then active user-cho-
sen Web content (such as redirection to
malicious Web pages) can be injected into
the Web application and later served to
other clients that load the tainted Web
page in their browsers. This instantiation
of the injection weakness is most com-
monly referred to as cross-site scripting
(XSS). As observed in CWE-79 [4], the
structure of the dynamically generated
Web page is altered by sending code
(HTML and JavaScript) in through legiti-
mate user input channels to the Web appli-
cation.

We also discuss the application of the
injection semantic template to study arti-
facts related to a confirmed XSS vulnera-
bility (CVE-2007-5000, see [5]) in the
Apache HTTP Server project. For the
interested reader, we have previously elab-
orated on the buffer overflow semantic
template in [6].

Studying Software Vulnerabilities

There have been several research efforts to enumerate and categorize software weaknesses that lead to vulnerabilities. To con-
solidate these efforts, the Common Weakness Enumeration (CWE) is a community-developed dictionary of software weak-
ness types and their relationships. Yet, using the CWE to study and prevent vulnerabilities in specific software projects is dif-
ficult. This article presents a novel approach for using the CWE to organize and integrate the vulnerability information
recorded in large project repositories.

Dr. Robin A. Gandhi, Dr. Harvey Siy, and Yan Wu
The University of Nebraska at Omaha

Studying Software Vulnerabilities

September/October 2010 www.stsc.hill.af.mil 17

Building a Semantic Template
When it comes to security vulnerabilities,
we face an interesting paradox. On one
end, we are inundated with discovered vul-
nerability information from its detection
to its fix. On the other end, there is most
often a lack of security knowhow among
stakeholders in the SDLC. We realize that
during software development, especially in
the implementation stage, the details a
programmer has to remember to avoid
security vulnerabilities can be enormous.
The mere existence of long checklists and
guides (such as the CWE) is not enough.
To deal with enormous details, the use of
long checklists needs to be facilitated by
simple cognitive guides or templates.
Therefore, to effectively and quickly study
the large amounts of information associ-
ated with vulnerabilities, we ask the fol-
lowing four fundamental questions:
1. What are the software faults? In other

words, what are the concrete manifes-
tations of errors in the software pro-
gram and design related to omission
(lack of security function), commis-

sion (incomplete security function), or
operational (improper usage) cate-
gories that can precede the weakness?

2. What are the defining characteristics
of the weakness?

3. What are the resources and locations
where the weakness commonly oc-
curs?

4. What are the consequences? In other
words, what are the failure conditions
violating the security properties that
can be preceded by the weakness?
Answers to these questions are highly

tangled in current CWE documentation.
For each major class of weakness (such as
injection), a large number of CWE cate-
gories can be identified to find answers to
these questions. As a result, a significant
amount of work is needed to identify the
trail of CWE categories such that the
chain of events that lead to a vulnerability
can be reconstructed. To facilitate such
analysis, the creation of a semantic tem-
plate can be viewed as a systematic process
of untangling the CWE categories and
their descriptions into different bins that

correspond to the four questions. We first
describe the preparation and collection
phase of building a semantic template.

Preparation and Collection
Phase
Selection of Content
Since the CWE is continuously evolving, it
is important to note that our template is
based on Version 1.6 [7]. The CWE uses
views to integrate multiple categorizations
of weaknesses that share several CWE
categories. We use the two most promi-
nent views of the CWE: the development
view (CWE-699) of CWE categories, suit-
ed for practitioners in the SDLC, and the
research view (CWE-1000), suited for
research purposes (as it has a deep and
abstract hierarchical structure).

Extraction of Relevant Weaknesses
The next step is to identify the CWE cat-
egory that identifies the weakness of
interest at the most abstract level. For the
Injection weakness, CWE-74 is such a cate-
gory [3]. Referred to as the root category,

CRLF = Carriage Return Line Feeds.
IS-A = Means that a is a subclass of b.
LDAP = Lightweight Directory Access Protocol.
URI = Uniform Resource Identifier.

INCOMPLETE

Figure 1: Injection Semantic Template

Game-Changing Tools and Practices

18 CROSSTALK The Journal of Defense Software Engineering September/October 2010

we start here and adopt four strategies to
gather weaknesses related to it in the
CWE development and research views:
1. Navigate hierarchical relationships of

the root category (Parent and Child Of).
2. Navigate non-taxonomical relation-

ships such as Can Precede, Can Follow,
Peer-of in the CWE hyperlinked docu-
ment [7].

3. Keyword search on the CWE docu-
ment [7] for weaknesses that have the
injection weakness described in their
primary or extended description. Key-
word search is followed by exploration
of Parent, Sibling, and Child categories
of the discovered CWE category, for
relevance to the root category.

4. Visualization [8] of the root category
and its related weaknesses identified by
automatically parsing the CWE specifi-
cation available in XML [1].
While applying each strategy, use of

heuristics and some degree of judgment is
required on part of the subject matter
expert to include a CWE category into the
pool of relevant weaknesses. Details
about the CWE categories—discovered
by applying our strategies to gather weak-
ness related to the root category CWE-
74—can be found at <http://faculty.ist.
unomaha.edu/rgandhi/st/injectioncwe.
pdf>. Table 1 gives some summary statis-
tics roughly describing the scale of the

work involved. It speaks volumes about
the complexity of the mental model that
developers need to be aware of to under-
stand the consequences of their coding
and design decisions, such that injection
weakness can be avoided. Although hyper-
linked, navigating the CWE documenta-
tion and various graphical representations
is tedious and non-intuitive. While differ-
ent CWE views help to accommodate
multiple perspectives, it adds an additional
layer of complexity.

Template Structuring Phase
Separation of Tangled CWE
Descriptions
In this phase, the descriptions of the set
of CWE categories from the previous
phase are carefully analyzed for their cor-
respondence to either a Software Fault that
leads to injection; defining characteristic
of the injection Weakness; Resource/
Location where injection weaknesses occur;
or Consequences that follow from a injection
weakness. After these parts have been sep-
arated and placed in appropriate bins,
well-formed and succinct concepts for the
injection semantic template are identified
in each bin. For example, by analyzing the
descriptions for CWE-74 in [1], the fol-
lowing concepts (shown in quotes) can be
systematically identified for each of the

semantic template conceptual units
(shown in bold).
• Software Fault: “Failure to sanitize

user input of syntax that has implica-
tions in a different plane.”

• Weakness: “Elements of user-con-
trolled data have implications in a dif-
ferent plane.”

• Resource/Location: “User con-
trolled input data.”

• Consequences: “Execution of arbi-
trary user-controlled data,” “Disclo-
sure of data and further exploration,”
“Unaccounted actions,” “Control of
authentication,” “Unauthorized data
recall and writing,” and “Change
process flow.”
While some of these concepts overlap

with the CWE-79, this category identifies
the following unique and more specific
concepts:
• Software Fault: “Failure to preserve

generated Web page structure,”
derived from CWE-79, is a more spe-
cific software flaw than a “Failure to
sanitize user input of syntax that has
implications in a different plane,”
which is derived from CWE-74.

• Resource/Location: “Web page”
(output that is served to other users),
which is a “User controlled input data”
that is addressed in CWE-74.

Filtering Concepts and Introducing
Abstractions
The CWE categories are class, base, or
variant weakness, with class being the
most general. Class weaknesses are de-
scribed in a very abstract fashion, typically
independent of any specific language or
technology. Base weakness is also de-
scribed in an abstract fashion, but with
sufficient details to infer specific methods
for detection and prevention of the weak-
ness. On the other hand, variant weak-
nesses are described at a very low level of
detail, typically limited to a specific lan-
guage or technology.

With the original intent of the seman-
tic template to make weakness more
understandable, we derive the primary
concepts for software faults and weakness
characteristics from the more general class
and base CWE categories—while preserv-
ing traceability to the CWE categories
(with more specific variants) using their
identifiers. This design decision was taken
primarily to avoid missing the forest for
the trees. We expect it to be easier for
developers to remember a more generic
model of the weakness rather than a
detailed one. However, in the case of the
Resource/Location conceptual unit, it is
not uncommon to extract concepts in the

Figure 2: Annotation of Information Pieces for Vulnerability CVE-2007-5000 with Concepts of
the Injection Semantic Template

Measures Value

Highest depth of the hierarchy among CWEs relevant to injection 4 (including root)

Average number of relationships (inward and outward) per CWE 1.6

Total number of relationships among CWEs relevant to injection 37

Total number of CWEs relevant to injection 46

Total number of pages in the CWE document relevant to injection 83

Table 1: Measures Related to the Collection of Injection Related CWEs Measures

Studying Software Vulnerabilities

September/October 2010 www.stsc.hill.af.mil 19

template from variant weaknesses. For the
Consequences conceptual unit, we have
discovered that the concepts extracted
from consequences listed for class and
base CWE categories provide comprehen-
sive coverage of consequences identified
from more specific-variant CWE cate-
gories.

Template Structuring and
Representation
In this sub-task, the identified concepts
for the template are structured and related
to each other based on the relationships
between their corresponding CWE cate-
gories. From this effort, a highly struc-
tured collection of interdependent con-
cepts emerge (as shown in Figure 1 on
page 17). Each concept in the semantic
template of Figure 1 includes numbers
that identify relevant CWE categories. The
semantic template reduces duplication of
content across related CWE categories
while putting them in the context of each
other.

Template Refinement and Tailoring
The template can be easily used to study
vulnerability information gathered from
multiple sources or reconstruct a success-
ful software exploit. Related to both
CWEs and CVEs, the Common Attack
Pattern Enumeration and Classification
(CAPEC) [9] provides a standard way to
capture and communicate the manner in
which software weaknesses can be exploit-
ed. They are stepwise operationalizations
of attacks against software systems. By
mapping specific vulnerabilities (CVEs)
and attack patterns (CAPECs) to the
semantic template, it is further refined and
checked for obvious omissions. In the fol-
lowing section, we describe such mapping
in the context of the XSS vulnerability
from CVE-2007-5000. We also expect the
semantic templates to be tailored for a
specific project, product, or organization.

Using the Semantic Template
to Study Vulnerabilities
We use the injection semantic template to
study the vulnerability information avail-
able from multiple project specific sources
for the reported XSS vulnerability CVE-
2007-5000 in the Apache HTTP server.
These sources include the CVE vulnera-
bility descriptions; media reports about
the vulnerability on the Apache HTTP
server project public Web site; change his-
tory in the open source code repository;
source code versions (before and after the
fix); and related CAPECs as test cases.
The semantic template allows us to anno-

tate the natural language vulnerability
descriptions in order to understand and
reconstruct the way the injection weak-
nesses occur. The semantic template also
allows extrapolating or identifying missing
information (if any).

The semantic template provides intu-
itive visualization capabilities for the col-
lected vulnerability information. In Figure
2, the vulnerability artifacts related to
CVE-2007-5000 are filled into the tem-
plate. A larger visualization can be found
at <http://faculty.ist.uomaha.edu/rgand
hi/st/injectioncve.pdf>. Figure 2 pro-
vides an integrated view that shows how
developers can effectively reason about
why the vulnerability occurred; brain-
storm possible attack vectors (CAPECs);
and discuss the adequacy of performed
fixes. Stakeholders in the SDLC can con-
sume technical details with relative ease
and guided explanation.

We expect that over a collection of
CVE vulnerabilities in a particular project,
their mappings to specific weakness cate-
gories will reveal recurring error patterns
and provide project-specific measures for
identifying the most prominent CWE
weaknesses for which developers need
awareness and training.

Synergy with Other Security
Standardization Efforts
The semantic template provides a unified
view of software weaknesses (CWE),
actual vulnerabilities (CVE), and relevant
attack patterns (CAPEC) that can be used
to develop and prioritize risk-based test
cases for the most exploited software
flaws. Many source code static analysis
tool reports now provide explicit map-
pings from their error reports to CWE
and CVE identifiers. However, exploring a
CWE category and its related weaknesses
(with currently available textual and limit-
ed visualization formats) poses a signifi-
cant burden to the tool users. To this end,
the concepts in the semantic template
maintain explicit traceability to CWE
identifiers and hence can be used to pro-
vide an intuitive, visual, and layered expla-
nation to the tool user in the context of
the discovered flaw. The tool user can also

examine the fix information from past
vulnerabilities to determine the course of
action to take. In addition, mapping of
attack patterns (CAPECs) to software
faults in the semantic template provides
concrete scenarios to test and justify the
fix adequacy.

With the availability of the Malware
Attribute Enumeration and Characteri-
zation [10] standardization effort and its
mappings to the CWE, we expect to use
the semantic template to study what soft-
ware flaws most often contribute to suc-
cessful malware behaviors and CAPECs.
For example, the flaws that precede the
injection weakness would most likely con-
tribute to the success of malware behavior
for delivering a malicious payload.

Currently, the process of encoding the
known vulnerabilities and attack patterns
into the template is manually performed.
While manual population of templates is
scalable for recording of new vulnerabili-
ties as they are detected, relating past vul-
nerabilities with the templates requires
automation. An empirical study with the
Apache repository will be conducted to
assess the accuracy of this automated
process.

As part of our future work, we also
expect to build associations of the seman-
tic template with the Knowledge Discov-
ery Metamodel (KDM) [11]. The KDM
defines an ontology for software assets
and their relationships; this could be lever-
aged to describe the software faults and
resources in the semantic template using a
language-independent semantic represen-
tation. In turn, the semantic templates
could provide abstractions and visualiza-
tions to enhance the explanation of
KDM-based software mining results.

Conclusion
The CVE grows by roughly 15 to 20 vul-
nerabilities every day. Each discovered
vulnerability produces several informa-
tion pieces extending from its discovery to
its fix. With over 600 entries and more
than 20 different views, the CWE pro-
vides a significant body of knowledge for
classifying and categorizing software
weaknesses. However, it is a difficult task

As the government and defense sector adopts standards for tracking and detecting
specific vulnerabilities, there is an urgent need for developers to build software arti-
facts to avoid weaknesses that cause vulnerabilities in the first place. Semantic tem-
plates have multiple usage scenarios in software assurance, such as to study past vul-
nerabilities in source code repositories, suggest test cases for a identified software
resource, elicit requirements for avoiding weakness, and provide intuitive explanation-
based guidance to developers when conditions that lead to weaknesses are detected.

Software Defense Application

Game-Changing Tools and Practices

20 CROSSTALK The Journal of Defense Software Engineering September/October 2010

About the Authors

Robin A. Gandhi, Ph.D.,
is an assistant professor
of information assurance
in the College of Infor-
mation Science and Tech-
nology at the University
of Nebraska, Omaha

(UNO). He received his doctorate from
The University of North Carolina at
Charlotte. The goal of Gandhi’s research
is to develop theories and tools for
designing dependable software systems
that address both quality and assurance
needs. Gandhi is a member of the DHS’s
Software Assurance Workforce Educa-
tion and Training Working Group.

Nebraska University Center for
Information Assurance
College of Information Science
and Technology (IS&T)
6001 Dodge ST
PKI 177 A
Omaha, NE 68182-0500
Phone: (402) 554-3363
E-mail: rgandhi@unomaha.edu

Yan Wu is currently pur-
suing her doctorate in
information technology
at the UNO, and is
expecting to receive her
degree in Spring 2011.
The goal of her research

is to conduct empirical study on analyz-
ing software engineering knowledge in
order to support the development and
maintenance of reliable software-inten-
sive systems.

Department of Computer Science
College of IS&T
6001 Dodge ST
Omaha, NE 68182-0500
E-mail: ywu@unomaha.edu

Harvey Siy, Ph.D., is an
assistant professor in the
Department of Compu-
ter Science at the UNO.
He received his doctorate
in computer science from
the University of Mary-

land at College Park. He conducts empir-
ical research in software engineering to
understand and improve technologies
that support the development and evolu-
tion of reliable software-intensive sys-
tems. Siy has previously held positions at
Lucent Technologies and its research
division, Bell Laboratories.

Department of Computer Science
College of IS&T
6001 Dodge ST
PKI 281 B
Omaha, NE 68182-0500
Phone: (402) 554-2834
E-mail: hsiy@unomaha.edu

to use the CWE for conducting a system-
atic study of observed vulnerabilities.

This article describes a process to sys-
tematically study software vulnerabilities
using several software assurance commu-
nity standards. A semantic template
enables us to systematically assimilate the
information pieces related to a vulnerabil-
ity. This integrated information allows fun-
damental questions to be answered:
• How do software flaws lead to a vul-

nerability?
• What are the consequences of exploit-

ing the vulnerability?
• How were they exploited?
• What resources were involved?
• How were they fixed?
• Are the applied fixes sufficient?
• What project specific measures can be

produced for the CWE weakness cate-
gories that the vulnerability is related
to?

• How do the discovered vulnerability
and its fix revise our confidence in the
software system?

• What other weaknesses still remain?
• What steps should be taken to prevent

the vulnerabilities in general?
• Can tools be optimized to look for the

discovered patterns?
Answering these questions is essential

for an organization to measure the effec-
tiveness of its secure software develop-

ment activities and justify the correspond-
ing assurance given to customers.u

Acknowledgement
This research is funded in part by
DoD/Air Force Office of Scientific
Research, National Science Foundation
Award Number FA9550-07-1-0499, under
the title “High Assurance Software.”

References
1. The MITRE Corporation. CWE–

Common Weakness Enumeration. 10 Apr.
2010 <http://cwe.mitre.org/>.

2. The MITRE Corporation. CVE–Com-
mon Vulnerabilities and Exposures. 10
Apr. 2010 <www.cve.mitre.org>.

3. The MITRE Corporation. CWE–
Common Weakness Enumeration. “CWE-
74: Improper Neutralization of Special
Elements in Output Used by a
Downstream Component.” 5 Apr.
2010 <http://cwe.mitre.org/data/def
initions/74.html>.

4. The MITRE Corporation. CWE–
Common Weakness Enumeration. “CWE-
79: Improper Neutralization of Input
During Web Page Generation.” 5 Apr.
2010 <http://cwe.mitre.org/data/def
initions/79.html>.

5. The MITRE Corporation. CVE–
Common Vulnerabilities and Exposures.

“CVE-2007-5000 (under review).” 9
Sept. 2007 <http://cve.mitre.org/cgi
-bin/cvename.cgi?name=CVE-2007
-5000>.

6. Wu, Yan, Robin A. Gandhi, and
Harvey Siy. Using Semantic Templates to
Study Vulnerabilities Recorded in Large
Software Repositories. Proc. of the 6th
International Workshop on Software
Engineering for Secure Systems (SESS
’10) at the 32nd International Confer-
ence on Software Engineering (ICSE
2010), South Africa, Cape Town. 2010.

7. Martin, Robert A. CWE Version 1.6.
The MITRE Corporation. 29 Oct.
2009 <http://cwe.mitre.org/data/
published/cwe_v1.6.pdf>.

8. Siy, Harvey. “Injection-Related CWEs
– Graph-Viz Visualization.” <www.cs.
unomaha.edu/~hsiy/research/zgrvie
w/injectionCWEs.html>.

9. The MITRE Corporation. CAPEC–
Common Attack Pattern Enumeration and
Classification. 18 May 2010 <http://
capec.mitre.org>.

10. The MITRE Corporation. MAEC –
Malware Attribute Enumeration and Char-
acterization. 10 Apr. 2010 <http://
maec.mitre.org>.

11. “KDM 1.1.” Object Management Group.
10 Apr. 2010 <www.omg.org/spec/
KDM/1.1>.

September/October 2010 www.stsc.hill.af.mil 21

Effectively addressing software security
requires adequately balancing the

secure development and the secure opera-
tions domains (see the mechanisms listed
in Table 1).

The objective of security in develop-
ment is to prevent security issues in the
software causing vulnerability. In the best
case, this means preventing such security
issues from ever entering the software to
begin with. This best-case approach is dri-
ven by activities such as effective security
training, security policy definition, security
requirements specification and review,
secure architecture and design, and archi-
tectural risk analysis. In the worst case, this
means at least preventing such security
issues from ever being fielded into live sys-
tems. This later life-cycle approach is typ-
ically driven by activities such as secure
code analysis, security testing, and pene-
tration testing.

The objective of security in operations
is to prevent security issues in deployed
systems by securing their infrastructure,
configuration, and use. So, the ultimate
goal would be to have all operating soft-
ware totally free from vulnerability and
fully secure. Given the complexities
involved in today’s software and the ever-
changing threat landscape, the reality is
that no software can ever be presumed as
fully secure and will typically be under ongo-
ing and consistent attack. Beyond the ini-
tial security engineering of software oper-
ational deployment, the bulk of secure
software operations is about continuous
situational awareness and incident
response. Recognizing real-world practi-
calities, it is focused on answering the
foundational, ongoing secure operations
questions:
• Are we being attacked? (Were we

attacked?)
• How are we being attacked?
• What is the objective of the attack?
• What is our exposure?
• Who is attacking us?
• What should we do to protect against

these attacks in the future?

The commonality between the secure
development and secure operations
domains is the central role of understand-
ing how adversaries attack software. While
both domains have a need to understand
how software is attacked, the specific
needs of each domain differ in level of
abstraction and in purpose—but in a syn-
ergistic fashion. The secure development
domain needs to understand the attacker’s
perspective in abstract terms in order to
improve security across a wide range of
contexts, rather than individual instances.
The secure operations domain needs to
understand the attacker’s specific varia-
tions of behavior in gory detail in order to
recognize it, understand it, estimate its
effect, and plan its mitigation. Due to the
reciprocal balance between the top-down
perspective of secure development and
the bottom-up perspective of secure oper-
ations, there is an opportunity for each
domain to address its own requirements in
such a way that also provides value to the
other’s primary focus (see Figure 1, next
page).

Given the differing requirements
between the two domains (to characterize
attacks and potentially exchange this
information), a flexible mechanism is
required to capture, describe, and share
knowledge about common patterns of
attack. One such mechanism is the attack

pattern object as specified and leveraged
by the Common Attack Pattern Enumer-
ation and Classification (CAPEC), as out-
lined at <http://capec.mitre.org>. CAPEC
is a publicly available catalog of attack pat-
terns along with a comprehensive schema
and classification taxonomy intended to
form a standard mechanism for identify-
ing, collecting, refining, and sharing attack
patterns among the software community.
Established in 2000, the attack pattern
concept represents a description of com-
mon attack approaches abstracted from a
set of known real-world exploits. While
this source of raw data comes primarily
from the secure operations domain, attack
patterns today are primarily a construct
used by the secure development commu-
nity to aid software developers in improv-
ing the assurance profile of their software.

In this role, attack patterns offer the
secure development community unique
value in several areas such as:
• Representing abuse cases (how an

attacker would intentionally abuse a
software system) during requirements
elicitation, specification, and review.

• Mapping identified threats to the soft-
ware’s modeled attack surface as part
of threat modeling activities during
architecture and design.

• Guiding and prioritizing secure code
analysis during implementation. This

The Balance of Secure Development and Secure
Operations in the Software Security Equation

Software security is about reducing the risk that software poses to those who use it or are affected by it. This requires thought
and action more than simply at the point of development or use. It requires a more holistic approach, balancing secure devel-
opment and secure operations. The bad news is that these two capable domains typically do not interact much or understand
each other. The good news is that there are active ongoing efforts focused on addressing this gap.

Sean Barnum
The MITRE Corporation

• Effective Security Training

• Forensics

• Anti-Tamper Mechanisms

• Secure Architecture and Design • Intrusion Detection Systems

• Security Requirements • Proxies

• Security Policy • Firewalls

• Secure Coding • Intrusion Prevention Systems

• Security Testing • Real-Time Data Monitoring

• Penetration Testing • Operational Monitoring and Control

• Risk Management • Incident Response

• Secure Configurations

Mechanisms of Secure Development Mechanisms of Secure Operations

Table 1: Mechanisms for Secure Development and Operations

Game-Changing Tools and Practices

22 CROSSTALK The Journal of Defense Software Engineering September/October 2010

includes identifying specific high-risk
areas requiring greater analysis rigor as
well as the most relevant weaknesses
to look for.

• Identifying, specifying, and prioritizing
security test cases.

• Serving as attack templates for pene-
tration testing and objective persona
descriptors for red team penetration
testing.
The future potential for CAPEC

attack patterns lies beyond their evolving
and continued use within the secure devel-
opment community. The secure opera-
tions community can utilize CAPEC to
assist in situational awareness of deployed
systems under attack and aid in response
and mitigation. Several characteristics of
attack patterns make them relevant for the
secure operations community:
• Attack patterns provide high-level

rather than simply low-level detailed
patterns of attacks against software.

• Much of secure operations is about
analyzing low-level activity for patterns
and composing them into higher levels
of abstraction to detect, identify, and
respond to attacks.

• Software assurance attack patterns
provide a top-down, high-level context
for both the method and the intent of
attacks.

• Efforts are currently under way to for-
malize the CAPEC attack pattern
schema in order to provide adequate
detail of attacks for aligning and inte-
grating their context with bottom-up
incident analysis characterizations.
Attack patterns offer a unique and

practical bridge between the two domains,
as shown in Figure 2.

Using attack patterns makes it possible
for the secure development domain to
leverage significant value from secure
operations knowledge, enabling them to:
• Understand the real-world frequency

and success of various types of
attacks.

• Identify and prioritize relevant attack
patterns.

• Identify and prioritize the most critical
weaknesses to avoid.

• Identify new patterns and variations of
attack.
Through the use of attack patterns, it

is also possible for the secure operations
domain to leverage significant value from
secure development knowledge. This
enables those in the secure operations
domain to provide appropriate context to
help answer the foundational secure oper-
ations questions (see Table 2).

One of the maturation paths currently
under way for CAPEC involves integrat-

Attack

Most effective when continuum is integrated

Prevent Detect Identify Respond

Secure
Operations

Secure
Development

Attack Patterns

Attack Patterns

Secure Development Secure Operations

Figure 2: Attack Patterns Bridge Secure Development and Operations

Mechanisms of Secure Development Mechanisms of Secure Operations

Secure Architecture and Design Intrusion Detection Systems

Security Requirements Proxies

Security Policy Firewalls

Effective Security Training Secure Configurations

Secure Coding Intrusion Prevention Systems

Security Testing

Penetration Testing

Risk Management

Real-Time Data Monitoring

Operational Monitoring and Control

Incident Response

Forensics

Question Role of Attack Patterns

How are we being attacked? Attack patterns offer detailed structured descriptions
of common attacker behavior to help interpret
observed operational data and determine exactly
what sort of attack is occurring.

Are we being attacked?
(Were we attacked?)

Attack patterns offer structured descriptions of
common attacker behaviors to help interpret observed
operational data and determine its innocent or
malicious intent.

What is the objective of the attack? Elements of attack patterns outlining attacker
motivation and potential attack effects can be
leveraged to help map observed attack behaviors to
potential attacker intent.

What is our exposure? The structure detail and weakness mapping of attack
patterns can provide guidance in where to look and
what to look for when certain attack pattern behaviors
are observed.

Who is attacking us? Attack pattern threat characterization and detailed
attack execution flow can provide a framework for
organizing real-world attack data to assist in
attribution.

What should we do to prevent against
attacks in the future?

Attack patterns offer prescriptive guidance on solutions
and mitigation approaches that can be effective in
improving the resistance tolerance and/or resilience
to instances of a given pattern of attack.

Table 2: Attack Patterns Help Answer Questions Regarding Secure Operations

Attack

Most effective when continuum is integrated

Prevent Detect Identify Respond

Secure
Operations

Secure
Development

Attack Patterns

Attack Patterns

Secure Development Secure Operations

Figure 1: How Secure Development and Operations Can Work Together

The Balance of Secure Development and Secure Operations in the Software Security Equation

September/October 2010 www.stsc.hill.af.mil 23

ing and refining lower-level attack attribut-
es and characteristics to better support
automatable integration of both domains.
So far, this effort has been focused on
enhancing attack pattern descriptions with
greater levels of attack execution flow
detail and on the addition of two new
constructs: Target_Attack_Surfaces and
Observables.

The Target_Attack_Surfaces con-
struct is intended to give a structured
characterization of the relevant portions
of the targeted software that an attack is

attempting to exploit. This sort of detail
can be valuable within an operational con-
text, assisting in attack detection, identifi-
cation, and characterization through map-
ping of observed effects on target soft-
ware assets and resources. The current
draft schema (see Figure 3) focuses on
characterizing functional services, proto-
cols, command structures, etc. Future
schema revisions should extend this con-
ceptual construct to address a broader set
of attack surface characteristics.

The Observables construct is intend-

ed to capture and characterize events or
properties that are observable in the oper-
ational domain. These observable events
or properties can be used to adorn the
appropriate portions of the attack pat-
terns in order to tie the logical pattern
constructs to real-world evidence of their
occurrence or presence. This construct
has the potential for being the most
important bridge between the two
domains, as it enables the alignment of
the low-level aggregate mapping of
observables that occurs in the operations

Figure 3: CAPEC - High-Level Attack Surface Draft Schema (Figures 3 and 4 were created with Altova XMLSpy)

Figure 4: CAPEC - Observables Draft Schema

Game-Changing Tools and Practices

24 CROSSTALK The Journal of Defense Software Engineering September/October 2010

domain to the higher-level abstractions of
attacker methodology, motivation, and
capability that exist in the development
domain. By capturing them in a structured
fashion, the intent is to enable future
potential for detailed automatable map-
ping and analysis heuristics.

The current Observables draft schema
(see Figure 4 on the previous page) adorns
the Attack_Step, Attack_Step_Tech-
nique, Attack_Step Outcome, and Attack
_Step Security_Control elements of the
attack pattern schema. It focuses on char-
acterizing specific observable measures,
their value, their sensor context, and how
accurate or easy to obfuscate they are.
Future schema revisions should flesh out

the construct to cover other relevant
dimensions. Changes will be based on
input and collaboration from the opera-
tions community and other aligned knowl-
edge standardization efforts needing this
construct (e.g., Common Event Enumer-
ation [CEE] and Malware Attribute
Enumeration and Characterization
[MAEC]).

People interested in learning more
about CAPEC, CEE, MAEC, and other
related knowledge standardization efforts
can gain better insight and join in the
community collaboration efforts by going
to the Making Security Measureable Web
site <http://msm.mitre.org> and the
Software Assurance Community Re-

sources and Information Clearinghouse
<https://buildsecurityin.uscert.gov/swa>.

Summary
Effective software security requires a bal-
anced approach between secure develop-
ment and secure operations. The com-
monality between these two domains is
the central role of understanding how
adversaries attack software. CAPEC attack
patterns offer a mechanism for structured
characterization of common attacks that
enable a useful exchange of information
relevant to both domains, also aligning
low-level observations to high-level con-
texts for mutual benefit.

CAPEC is currently a resource lever-
aged primarily by the secure development
community, but there is an opportunity
and a strong need for increased collabora-
tion from the secure operations communi-
ty. It will help shape and refine CAPEC to
more effectively serve both communities,
potentially acting as an integrating bridge
to eventually yield a more holistic software
security capability.

We encourage readers within both
communities to become actively involved
and lend their knowledge and voices to
our unifying efforts.u

About the Author

Sean Barnum is a soft-
ware assurance principal
at The MITRE Corpo-
ration, serving as a
thought leader and se-
nior advisor on software

assurance and cybersecurity projects. He
has more than 20 years of experience in
the software industry in the areas of
development, software quality assur-
ance, quality management, process
architecture and improvement, knowl-
edge management, and security. He is
involved in numerous knowledge stan-
dards-defining efforts, including Com-
mon Weakness Enumeration, CAPEC,
and other elements of software assur-
ance programs for the DHS, DoD, and
the National Institute of Standards and
Technology. He is co-author of the
book “Software Security Engineering: A
Guide for Project Managers.”

Phone: (703) 473-8262
E-mail: sbarnum@mitre.org

The DoD—along with its supporting defense industry—has identified cybersecurity
as one of its top priorities today and going forward. The software security portion of
this battle is currently being fought on two fronts, secure development and secure
operations, with little coordination between the two. This article discusses the objec-
tives and activities unique to each of these areas as well as some of their shared com-
monality in the relevance of understanding the attacker’s perspective. Most impor-
tantly, it introduces attack patterns as a resource that characterizes this commonality
and offers a practical and actionable bridge for coordination and collaboration
between the secure development and secure operations communities. An under-
standing of attack patterns and their relevance to a unified approach to software secu-
rity should be requisite knowledge for all those working in DoD software.

Software Defense Application

September/October 2010 www.stsc.hill.af.mil 25

There is general recognition that soft-
ware engineering practice can best be

improved through education. In fact, the
establishment of a National Cyberspace
Security Awareness and Training Program
was among the three highest priorities in
[1], which describes the program’s pur-
pose as to “improve cybersecurity knowl-
edge, and understanding of the issues”
and to produce a “sufficient number of
adequately trained ... personnel to create
and manage secure systems.” The corner-
stone of the initiative was the mandate to
ensure “adequate training and education
to support cybersecurity needs” [1].

The aim of these initiatives was to
guarantee that SwA practices would be
embedded in the day-to-day actions of the
overall workforce [2]. The problem with
SwA is that there was no single point of
reference to “guide the development and
integration of education and training con-
tent relevant to software assurance” [3].
That led the DHS to publish a 387-page
Common Body of Knowledge (CBK),
which specifies a comprehensive set of
recommended practices for secure SwA.
These range from “heavyweight design
methods” to “model contract language for
vendors” [3]. The problem is that none of
these recommendations have made their
way into common use.

The traditional means of disseminat-
ing any kind of new knowledge into the
society at-large is through formally consti-
tuted education, training, and awareness
programs [2]. Back in 2003, the National
Strategy recognized that fact in Action/
Recommendation 3-6, which states that
research and development efforts should
be conducted in the general area of secure
SwA in order to coordinate “the develop-
ment and dissemination of best practices
for cybersecurity.” [1].

The obvious question eight years later
is, “How close are we to achieving that
goal?” The two projects discussed in this
article are designed to promote more
secure software teaching in higher educa-
tion. Together, they represent the first
attempts to ensure that the principles and
practices of secure SwA knowledge are

embedded in mainstream higher educa-
tion processes.

The problem with SwA knowledge is
that it is crosscutting rather than discipli-
nary. In essence, the knowledge base for
SwA is located in a range of traditional
studies [4]. That includes dissimilar CBK
areas such as software engineering, sys-
tems engineering, information systems
security engineering, safety, security, test-
ing, information assurance, law, and pro-

ject management [4]. As a result, secure
SwA content might appear in many differ-
ent places and be taught in many different
ways in conventional education settings.

It is clearly unacceptable to approach
the teaching and learning process in such
a disjointed way. Therefore, the way edu-
cators promulgate secure SwA knowledge
has to be coordinated. In order to coordi-
nate the teaching and learning process, a
formal effort has to be made to integrate
“software assurance content ... into the
body of knowledge of each contributing
discipline” [5]. There are two practical bar-
riers to achieving that outcome:
1. It is not clear what specific knowledge

and skills should be taught in each
area.

2. There are no validated methods for
delivering that knowledge once it has
been identified.
Logically, the first step in integrating

new knowledge into conventional learning
environments is to identify, relate, and cat-
alogue what is presently out there.

Project 1 – Documenting
Knowledge
The goal of one project—funded by the
DoD and conducted at the University of
Detroit Mercy (UDM)—is attempting to
identify and document any knowledge,
from any source, that could be related to
SwA. That knowledge came from all tradi-
tional computing disciplines, such as com-
puter science, software engineering, and
information systems. Nevertheless (be-
sides the strictly technical areas), the pro-
ject also incorporated the conventional
areas of information security as well as rel-
evant knowledge from the behavioral and
social sciences. The knowledge was
obtained from all accessible public and pri-
vate sector sources.

The resulting knowledge base is con-
tained in the DoD’s National Software
Assurance Repository (NSAR). The
NSAR encompasses and relates all com-
monly accepted practices, principles,
methodologies, and tools for SwA. It is
managed by an automated online knowl-
edge management system with an underly-
ing knowledge management system
roughly based on the CBK; however, to
ensure the validity of the CBK frame-
work, the mind map was fine-tuned and
validated through conducting a classic
Delphi study using a panel of 11 national-
ly known secure SwA experts.

The knowledge base contains as many
life-cycle methodologies and tools for
assuring software as could be identified. It
also itemizes all related supporting princi-
ples and concepts that are aimed at
increasing the assurance and security of
internally developed and sustained soft-
ware. That also includes products and ser-

Two Initiatives for Disseminating
Software Assurance Knowledge

Education in software assurance (SwA) is an essential element in the effort to produce secure code. This article describes two efforts
that support national cybersecurity education goals: development of SwA learning artifacts that can be integrated into conventional
learning environments and establishment of a reference curriculum for a master’s degree program, known as the MSwA.

Dr. Dan Shoemaker
University of Detroit Mercy

Dr. Nancy R. Mead
SEI

“The two projects ... are
designed to promote
more secure software

teaching ... they represent
the first attempts to

ensure that the
principles and practices

of secure SWA
knowledge are embedded

in mainstream higher
education processes.”

Game-Changing Tools and Practices

26 CROSSTALK The Journal of Defense Software Engineering September/October 2010

vices purchased from outside vendors.
The knowledge base is evolutionary and
inclusive: As the literature of the field
expands or new sources are identified, that
material will be catalogued and added to
the current knowledge base.

Pedagogy Development
The actual purpose of the UDM project
was not simply to gather knowledge; it was
also to ensure the teaching of secure soft-
ware topics in all appropriate education,
training, and awareness settings. In sup-
port of that goal, the project has packaged
the contents of its knowledge base into
discrete learning modules. These modules
are designed to facilitate the efficient SwA
knowledge transfer to all relevant teaching
and learning settings. As a result, the mod-
ules can be incorporated into a wide range
of teaching and learning environments.
They are appropriate for graduate, under-
graduate, community college, and even
high school education, as well as in train-
ing and awareness applications.

The modules are intended to be sepa-
rate, standalone learning artifacts capable
of conveying all of the requisite know-
how for a given topic. At a minimum,
each module can be delivered in a con-

ventional classroom. However, the mod-
ules embody supporting material that also
allows delivery in a range of asynchro-
nous and Web-enabled learning environ-
ments. That flexibility facilitates the effi-
cient transfer of new workforce skills and
practices to all types of settings.

Each module conveys a logical ele-
ment of SwA practice. The entire collec-
tion of these modules is mapped to the
body of knowledge contained in the
knowledge base, which is structured on
the most commonly accepted model for
secure SwA practice (the CBK). This
mapping provides precise guidance about
the places where the newly developed
instructional content fits within the com-
monly accepted understanding of the cor-
rect elements of practical SwA work.

Each of the actual teaching modules
incorporates a set of conventional learn-
ing artifacts that are easily recognizable to
traditional educators. Every module
includes:
1. A table of learning specifications.
2. Presentation slides for each concept

contained in the module.
3. An evaluation process.
4. Any relevant Web-enabled supporting

material.

5. A model delivery system.
There is also an accompanying peda-

gogical methodology for each individual
learning module. In other words, every
module incorporates a validated set of
teaching tools, with each tool being opti-
mized to ensure the maximum knowledge
transfer for all potential teaching settings.

Mapping for Broad-Scale Integration
In order to ensure integration into con-
ventional higher education curricula, the
UDM project has formally mapped all of
its secure SwA courseware modules to the
standard set of computing topics speci-
fied for three of the five computer disci-
plines in the Computing Curricula 2005
standard (CC2005) [6]. This standard is a
joint authorization of the Association for
Computer Machinery (ACM), IEEE, and
Association for Information Systems.
Since these are the three associations that
are responsible for developing and over-
seeing computing curricula worldwide,
the CC2005 can be considered to be
exhaustively authoritative.

The elements of secure SwA practice
were mapped from the CBK to the gen-
erally accepted curricular recommenda-
tions (as itemized in CC2005). The aim of
the mapping process was to identify
where specifications for secure practice
contained in the CBK fit within the rec-
ommendations for curricular content in
each of the disciplines of computer sci-
ence, software engineering, and informa-
tion systems.

The mapping itself was a keyword-
based process, utilizing the terms from
the curricular requirements contained in
Tables 3.1 and 3.2 of CC2005 as the
search criterion. Where instances of that
term were found in the CBK, anecdotal
analysis was employed to determine the
intent of the term with respect to the dis-
cussion of secure SwA. Those intents
were noted, aggregated, and then catego-
rized into highly specific concepts for
secure SwA that had to be communicated
along with the teaching of each of the
conventional CC2005 curricula elements.
The detailed mapping of concepts to rec-
ommendations was used to tailor the inte-
gration of the associated secure SwA
teaching module for supporting or facili-
tating the specific intent of that term.

The project provides a detailed speci-
fication of where each learning module
best fits within CC2005’s curriculum. It
also provides a justification for why the
module was placed where it was in that
particular curriculum. The justification is
based on the mapping between the mod-
ule and the recommended topics for a

Two Initiatives for Disseminating Software Assurance Knowledge

September/October 2010 www.stsc.hill.af.mil 27

standard computer science, software engi-
neering, and information systems curricu-
lum. For instance, the project provides
specific recommendations for the precise
place in an information systems curricu-
lum where new secure SwA content could
be added to current testing topics. The
justification is necessary to help individual
curriculum designers understand where
the learning module should be placed in
their curricula. The justification also facil-
itates the integration and acceptance of
that module within the traditional higher
education and training communities.

Project 2 – MSwA Curriculum
The second education initiative to sup-
port the National Strategy focused pri-
marily on development of a reference
curriculum for an MSwA. The SEI is
leading this ongoing education effort in
support of the DHS’s National Cyber
Security Division. This is a particularly
important focus because much of the
body of knowledge in secure SwA is
based on a foundation of software engi-
neering principles and practices. This pro-
ject specifies a set of topics and all of the
attendant prerequisite knowledge and
requirements needed to ensure a properly
educated SwA professional. It differs
from the prior project in that it identifies
just the key knowledge elements required
to produce a well-educated practitioner—
and structures those elements into a com-
prehensive curriculum.

The curriculum development team
includes technical staff from the SEI and
faculty from a number of universities,
including international representation.
The reference curriculum includes guide-
lines that were used to develop the cur-
riculum, prerequisites and proposed out-
comes, curriculum architecture, a curricu-
lum body of knowledge, implementation
guidelines, and a glossary of terms. A
number of existing artifacts (including the
CBK), the recent graduate software engi-
neering curriculum guidelines [7], and the
older SEI reports on graduate software
engineering education [8, 9] are inputs to
the project. The team also referenced [10]
as needed, as software engineering knowl-
edge is fundamental to SwA. The project
was inspired in part by the DHS Build
Security In (BSI) Web site <https://
buildsecurityin.us-cert.gov>, which con-
tains articles providing practical advice on
SwA to practitioners. It is this practition-
er focus that is central to the curriculum
development effort. Another important
resource for the team (also inspired by the
BSI Web site) is [11], which was used
along with the previously noted resources

to identify the SwA practices to include in
the curriculum.

In order to stay grounded, an invited
review team for the curriculum was also
involved in the process. In addition, some
key industry managers and practitioners
generously agreed to be surveyed in order
to help validate our understanding of the
desired outcomes. The curriculum also
includes a detailed list of knowledge units
and corresponding Bloom’s taxonomy
levels [12].

Establishment of a new degree pro-
gram is a very ambitious undertaking. As
a consequence, the team expects that
some universities will elect to establish

tracks or specializations in SwA within
existing graduate disciplines (e.g., Mas-
ter’s-level programs in Software Engi-
neering [MSwE]), rather than establishing
a whole new degree. Therefore, guidance
is provided on how to implement a track
or specialization, and sample course syl-
labi are also provided. Team members at
Monmouth University and Embry-Riddle
Aeronautical University developed candi-
date implementation strategies for incor-
porating curriculum elements at their uni-
versities.

In addition to the MSwA reference
curriculum, this project also produced a
set of sample outlines for SwA courses
that could be offered at the undergraduate
level [13]. These courses might form an
area of concentration within a computer
science or software engineering under-

graduate degree program for any prospec-
tive adopter.

Curriculum Transition Plans
There are a number of transition activities
that accompany this curriculum work, as a
curriculum is only the first step in effect-
ing change in education. The team has
started to work with the IEEE Computer
Society towards professional recognition,
including a seminar at the March 2010
Conference on Software Engineering
Education and Training to raise aware-
ness1. The curriculum has been presented
at the 2010 Curriculum Development in
Security and Information Assurance
workshop, at a June 2010 DHS Software
Assurance Working Group meeting, and
also in the Information Assurance
Capacity Building Program2. Finally, the
team will also form a group to work with
and provide assistance to universities who
wish to offer SwA graduate courses. The
team has also started tailoring the curricu-
lum into course offerings that would fit at
the community college level.

Looking beyond these near-term
activities, the team plans to develop more
extensive faculty development work-
shops, course materials, and course offer-
ings in this area. They also hope to work
towards SwA certification along the same
lines as IEEE’s Computer Software
Development Professional. There is an
opportunity for distance education in this
area, and eventually they may look at high
school educational opportunities. The
team feels that SwA education is essential
at all levels, in order to ensure that soft-
ware and software-intensive systems are
developed with assurance in mind.

Conclusions
Our understanding of the knowledge that
is needed to ensure capable SwA is begin-
ning to be shaped by these two projects.
In that respect—and particularly given
the critical importance of secure software
to the national interest—they are working
together to advance that process. Both
projects are beginning to establish the
foundation for moving into the main-
stream of education, training, and aware-
ness a field that has historically not been
either well understood nor well recog-
nized.

The maturity of SwA education will
have advanced when:
• MSwA programs—and SwA special-

izations within MSwE programs—are
widely available.

• The SwA materials database is com-
monly used in course development.

• SwA offerings are standard elements

“Our understanding of
the knowledge that is

needed to ensure
capable SwA is beginning

to be shaped by these
two projects. In that

respect—and particularly
given the critical

importance of secure
software to the national

interest—they are
working together to

advance that process.”

Game-Changing Tools and Practices

28 CROSSTALK The Journal of Defense Software Engineering September/October 2010

of undergraduate computer science
and software engineering degree pro-
grams.

• The SwA body of knowledge has been
codified.
In the case of the MSwA curriculum

project, these master’s programs and
tracks provide an explicit curriculum of
knowledge and skills necessary to produce
a well-educated SwA professional. Ulti-
mately, the curriculum will be supported
by the needed course materials and course
offerings. In the case of the UDM project,
every instructor in a computer-related dis-
cipline now has access to validated con-
tent and instructional materials that can be
easily incorporated into existing courses.

In both projects, the boundaries and
elements of the teaching and learning
process for SwA education are clarified.
They are initial steps in the long road to
being able to assure the correctness and
integrity of the nation’s software with total
confidence. Together, they create a direc-
tion and foundation on which the future
of the profession can be built.

References
1. Clark, Richard A., and Howard A.

Schmidt. A National Strategy to Secure
Cyberspace. Washington: The Presi-

dent’s Critical Infrastructure Protect-
ion Board. Feb. 2003 <www.us-cert.
gov/reading_room/cyberspace_strat
egy.pdf>.

2. Cogburn, Derrick L. Globalization,
Knowledge, Education and Training in the
Information Age, United Nations Educa-
tional, Scientific and Cultural Organization.
Director, Centre for Information
Society Development in Africa and
Africa Regional Director, Global
Information Infrastructure Commis-
sion. 1 Dec. 2009 <www.unesco.org/
webworld/infoethics_2/eng/papers/
paper_23.htm>.

3. Redwine, Samuel T., Ed. Software
Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire and Sustain
Secure Software, Version 1.1. Washington
D.C.: DHS, 2006.

4. Mead, Nancy R., Dan Shoemaker, and
Jeffrey Ingalsbe. “Integrating Software
Assurance Knowledge into Conven-
tional Curricula.” CrossTalk Jan.
2008 <www.stsc.hill.af.mil/crosstalk/
2008/01/0801MeadShoemakerIngals
be.html>.

5. Shoemaker, Dan, et al. A Comparison of
the Software Assurance Common Body of
Knowledge to Common Curricular Stan-
dards. Proc. of the 20th Conference on

Software Engineering Education and
Training. Dublin, Ireland. 3-5 July,
2007.

6. The Association for Computing Ma-
chinery, The Association for Infor-
mation Systems, and The Computer
Society. Computing Curricula 2005: The
Overview Report, Computing Curricula
Series. 30 Sept. 2005 <www.acm.org/
educat ion/cur r ic_vols/CC2005
-March06Final.pdf>.

7. Integrated Software & Systems Engi-
neering Curriculum Project – Stevens
Institute of Technology. Graduate
Software Engineering 2009 (GSWe2009)
Curriculum Guidelines for Graduate Degree
Programs in Software Engineering. 30 Sept.
2009 <www. gswe2009.org/>.

8. Ford, Gary. 1991 SEI Report on
Graduate Software Engineering Education.
SEI, Carnegie Mellon University.
Technical Report CMU/SEI-91-TR-
002. Apr. 1991 <www.sei.cmu.edu/
reports/91tr002.pdf>.

9. Ardis, Mark, and Gary Ford. SEI
Report on Graduate Software Engineering
Education. SEI, Carnegie Mellon
University. Technical Report CMU/
SEI-89-TR-21. June 1989 <www.sei.
cmu.edu/reports/89tr021.pdf>.

10. IEEE Computer Society. Guide to the

Two Initiatives for Disseminating Software Assurance Knowledge

September/October 2010 www.stsc.hill.af.mil 29

Software Engineering Body of Knowledge
(SWEBOK). 2004 <www.computer.
o r g/por t a l /web/swebok/h tm l
format>.

11. Allen, Julia, et al. Software Security Engi-
neering: A Guide for Project Managers.
Upper Saddle River, NJ: Addison-
Wesley, 2008.

12. Bloom, Benjamin S., ed. Taxonomy of
Educational Objectives: The Classification of
Educational Goals: Handbook I: Cognitive
Domain. New York: Longman, 1956.

13. Mead, Nancy R., Thomas J. Hilburn,
and Richard C. Linger. Software Assur-
ance Curriculum Project Volume II:

Undergraduate Course Outlines. SEI,
Carnegie Mellon University. Technical
Report CMU/SEI-2010-TR-019. Jan.
2010.

14. The MITRE Corporation. Common
Weakness Enumeration. 17 May 2010
<http://cwe.mitre.org>.

Notes
1. The seminar will be distributed at a

later time in the Virtual Training
Environment format.

2. This is a faculty development program
that was held this July at Carnegie
Mellon University.

About the Authors

Nancy R. Mead, Ph.D.,
is a senior technical staff
member for the CERT
Program at the SEI. She
is also a faculty member
in the Master of Software
Engineering and Master

of Information Systems Management
programs at Carnegie Mellon. Her
research interests are information securi-
ty, software requirements engineering,
and software architectures. Mead has
more than 150 publications and invited
presentations. She is an IEEE fellow and
a Distinguished Member of the ACM.
Mead received her doctorate in mathe-
matics from the Polytechnic Institute of
New York and has bachelor’s and mas-
ter’s degrees in mathematics from New
York University.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-3890
E-mail: nrm@sei.cmu.edu

Dan Shoemaker, Ph.D.,
is the Director of the
Institute for Cyber Se-
curity Studies, a National
Security Agency Center
of Academic Excellence,
at the UDM. He has been

professor and chair of computer and
information systems at the UDM for 25
years, and co-authored the textbook,
“Information Assurance for the
Enterprise.” His research interests are in
the areas of secure SwA, information
assurance and enterprise security archi-
tectures, and information technology
governance and control. Shoemaker has
both a bachelor’s and doctorate degree
from the University of Michigan, and
master’s degrees from Eastern Michigan
University.

Computer and Information
Systems
College of Business
Administration
University of Detroit Mercy
Detroit, MI 48221
Phone: (313) 993-1202
E-mail: shoemadp@udmercy.edu

Cybersecurity has been an area of national interest for almost a decade. Education has
been noted for years—all the way up to the White House—as one of the most impor-
tant elements in securing cyberspace. Yet, the DHS’s Common Weakness Enumeration
[14] documents 797 common defects—and the list is still growing. That is due to cur-
rent software engineering practice, which has generated software defects at a relatively
constant rate for the past 40 years. Those defects—according to a 2008 International
Data Corporation survey (see <www.coverity.com/html/press_story65_08_04_08.
html>)—now cost the average U.S. corporation $22 million dollars annually. Worse,
they leave DoD systems, as well those of all government and industry, susceptible to
attack. This article shows successful educational experiences in developing concepts
and passing along the principles and practices of secure SwA knowledge.

Software Defense Application COMING EVENTS

September 27-October 1

13th Semi-Annual DHS Software

Assurance Forum

Gaithersburg, MD

https://buildsecurityin.us-cert.gov/

bsi/events/1133-BSI.html

October 31-November 3

Milcom 2010

San Jose, CA

www.milcom.org

November 7-11

18th International Symposium on the

Foundations of Software Engineering

Santa Fe, NM

http://fse18.cse.wustl.edu

December 4-8

MICRO-43

Atlanta, GA

www.microarch.org/micro43

December 14-16

DHS Software Assurance Working

Group Sessions

McLean, VA

https://buildsecurityin.us-cert.gov/

bsi/events/1135-BSI.html

January 4-7, 2011

Hawaii International Conference on

System Sciences

Koloa, Kauai, HI

www.hicss.hawaii.edu

February 28-March 4, 2011

14th Semi-Annual DHS Software

Assurance Forum

McLean, VA

https://buildsecurityin.us-cert.gov/

bsi/events/1136-BSI.html

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
<kasey.thompson@hill.af.mil>.

Departments

30 CROSSTALK The Journal of Defense Software Engineering September/October 2010

Software Assurance Metrics and Tool
Evaluation (SAMATE)
http://samate.nist.gov
After reading Dr. Yannick Moy’s Static Analysis Is Not Just
for Finding Bugs, visit this DHS National Cyber Security
Division and National Institute of Standards and
Technology-sponsored site, brimming with information on
cutting-edge static analysis tools. The SAMATE Web site
establishes a methodology for evaluating software assurance
tools such as Source Code Security Analyzers, Web
Application Vulnerability Scanners, and Binary Code
Scanners. There is also the SAMATE Reference Dataset, a
community repository of example code and other artifacts
to help end-users evaluate tools and developers test their
methods. Finally, you can learn more about SAMATE’s
Static Analysis Summits and Workshops, where the software
assurance community has come together—sometimes
defining the state-of-the-art in software security tools at
these gatherings.

Evaluating and Mitigating Software
Supply Chain Security Risks
www.sei.cmu.edu/reports/10tn016.pdf
Earlier this year, the authors of this issue’s Considering
Software Supply Chain Risks were also involved in co-writing
this DoD-focused technical report. In this document, Dr.
Robert J. Ellison and Dr. Carol Woody (this time with John
B. Goodenough and Charles B. Weinstock) present an ini-
tial analysis of how to evaluate and mitigate the risk of these
unauthorized insertions. The analysis is structured in terms
of actions that should be taken in each phase of the DoD
acquisition life cycle: initiation, development, configura-
tion/deployment, operations/maintenance, and disposal.

Mids Win Cyber Defense Exercise
(CDX)
www.navy.mil/search/display.asp?story_id=52902
Information Assurance Applications in Software Engineering
Projects details several lessons learned for U.S. Naval
Academy (USNA) student capstone projects, including par-
ticipation in the National Security Agency/Central Security
Service’s CDX. During this spring’s 10th Annual event, net-
work specialists—whose careers are based around securing
the government’s most sensitive communication systems—
challenged Service Academy teams, specifically testing their
ability to defend computer networks through projects the
students designed, built, and configured. This article dis-
cusses the 2010 event, chronicling the project and sharing
interviews with members of the USNA Midshipman’s win-
ning team.

National Vulnerability Database (NVD)
http://nvd.nist.gov
After reading Studying Software Vulnerabilities, you may
want to visit this government repository of standards-based
vulnerability management data. Information in the NVD
enables automation of vulnerability management, security
measurement, and compliance. Sponsored by the DHS’s
Cyber Security Division, its primary resources include a
Common Vulnerabilities & Exposures and Common
Configuration Enumeration search engine; access to the

National Checklist Program repository; Security Content
Automation Protocol-compatible tools and data feeds; an
official Common Platform Enumeration Dictionary; a
Common Vulnerability Scoring System; and a breakdown
of Common Weakness Enumeration.

Common Attack Pattern Enumeration
and Classification (CAPEC)
http://capec.mitre.org
As outlined in Sean Barnum’s The Balance of Secure
Development and Secure Operations in the Software Security
Equation, attack patterns are a powerful mechanism to cap-
ture and communicate the attacker’s perspective and their
approaches to exploit software. The MITRE Corporation’s
CAPEC Web site is an essential resource in that fight. A
DHS-sponsored software assurance initiative, CAPEC pro-
vides a publicly available catalog of attack patterns as well as
a comprehensive schema and classification taxonomy. The
Web site indentifies relevant security requirements, misuse,
and abuse cases; provides context for architectural risk
analysis and guidance for security architecture; prioritizes
and guides secure code review activities; provides context
for risk-based and penetration testing; leverages lessons
learned from security incidents; and helps identify appro-
priate prescriptive organization policies and standards.

The National Strategy to Secure
Cyberspace
http://georgewbush-whitehouse.archives.gov/pcipb
In their article Two Initiatives for Disseminating Software
Assurance Knowledge, Dr. Nancy R. Mead and Dr. Dan
Shoemaker discuss the 2003 White House initiative that
listed—as its third of five priorities—the need to establish a
National Cyberspace Security Awareness and Training
Program. At this Web site, you can read the entire strategy,
including a case for action, a letter from then-President
George W. Bush, as well as the sections detailing the other
four priorities: a National Cyberspace Security Response
System; National Cyberspace Security Threat and
Vulnerability Reduction Program; securing governments’
cyberspace; and national security and international cyber-
space security cooperation.

Defense Research & Engineering
(DDR&E)
www.acq.osd.mil/ddre
As part of the DoD, the DDR&E extends the capabilities of
current warfighting systems, develops breakthrough capa-
bilities, and develops counter-strategic scientific and engi-
neering options. At this Web site, viewers can read reports
prepared for Congress including the “Strategic
Communication Science and Technology Plan,” learn the
latest technology news from DDR&E and other govern-
ment entities, and find out about their Science, Technology,
Engineering and Mathematics Education and Outreach
program. The site also promotes their latest portal,
DefenseSolutions.gov, which guarantees 30 days-or-less
response to ideas for products, services, prototypes, and
concepts that advance the military’s missions.

WEB SITES

BACKTALK

September/October 2010 www.stsc.hill.af.mil 31

This issue talks about how tools and practices change “the
game.” I am not sure really what “the game” is, but I cer-

tainly understand tools and practices. And—as long as we are
talking about electronic gadgets—why, I LOVE tools!

At the lowest level, a “tool” is pretty easy to define. According
to my handy Merriam-Webster Dictionary (the online version), it
is a “device that aids in accomplishing a task.” This definition
works for me (pun intended)1.

Do you have to be “intelligent” to use a tool? Depends on
your definition of “intelligence.” Anthropologists have decided
that monkeys are intelligent because they have been observed in
the wild using sticks to help dig and twigs to help them capture
termites for food. While some previous co-workers come to
mind with this anecdote2, I would like to propose an alterna-
tive definition of tool use. To me, significant tools alter my
“access.” Let me elaborate.

Prior to the 1980s, computers were certainly awesome
machines. They allowed users like me to
automate processes that used to take me
days (or weeks). My first personal comput-
er allowed me to organize my VHS tapes,
my CD collection, play games, etc. And
then, I bought a modem. WOW—I was
able to exchange programs and data with
other users! We had bulletin boards to
exchange programs, simple newsgroups
allowing me to exchange thoughts ... and e-
mail! I had access to others.

And then the Internet evolved. Stores
put inventories online. Books and pictures and advertisements
and Web sites abounded. Not only did I have access to others, I
had access to information. Lots of it—but too much to easily
manage.

And behold: Search engines came into being! In just a few
years, we replaced saying “I’ll look that up” with “I’ll google
that.” In fact, the Merriam-Webster online dictionary gives the
lower-case definition of “google” not as a noun (and a name for
a search engine), but as a transitive verb! So now I can google—
and have access to useful information.

And, during these years when the Internet was becoming as
commonplace as indoor plumbing, another driving force was
shaping our use of tools: the cell phone. Remember the “good
old days” when you could leave your office and were expected to
be unreachable for long periods of time? You received paper
messages? Then the cell phone (and its diminutive cousin, the
beeper) gave people instant access to others. Can’t find them?
Call. Can’t get them to answer? Leave a voice mail. Haven’t
responded to voice mail yet? Txt them3!

And, I must confess that I did not stop with the cell phone:
I use both an iPhone and an iPad. Never thought I would—after
all, I just wanted my phone to make and receive phone calls. But
once I tried it, I was hooked. I’m able to browse the Internet
pretty much anywhere, anytime. Somebody wants to know the
name of Judy Garland’s stunt double during the “Wizard of
Oz”? No problem: Snap out the phone, hit Google Search, and

find out4. And my iPad is even more addicting. I have about 20
books loaded on it, and can use it anywhere. If I desperately need
Internet access, it has 3G capability—so that I don’t look like a
TOTAL geek5 with an iPad in one hand and an iPhone in the
other. I now have instant access to useful information combined
with instant access to others. Anytime, almost anywhere. In fact,
when I am driving home to visit my folks, I frequently check my
phone to see what kind of coverage area I am in. If I don’t see
any bars of coverage, I compulsively check frequently until I am
in range again. And wonder: Was anybody trying to reach me? We
have become so dependent on our tools that we can’t stand being

out of access!
I used to tell the story about a boss I had many, many

years ago. The rest of us were updating to new dual-core
Pentium machines, a new operating system, and we were
putting in a T1 line for really high-speed Internet access.

And we got to thinking about our boss. A few of us
made the suggestion that perhaps—to
increase office productivity—we should
give him a computer running MS-DOS
3.1, Internet access via a Hayes 300 Baud
Smartmodem, and a 16-color 640x200
Color Graphics Adapter monitor. It
might not have speeded up his access to
us, but it would certainly increase our
productivity by, oh, say 1,000 percent:
His constant barrage of almost totally
useless e-mails would slow down, and we
could do real work.

Tools are work multipliers. They are supposed to permit you
to do more in a limited time, and are supposed to make your life
easier and more productive.

What tools do you use? How well do you use them? Does
your use of the “tools of your trade” hinder others? Are you get-
ting a Hayes 300 Baud Smartmodem for Christmas?

—David A. Cook, Ph.D.
Stephen F. Austin State University

<cookda@sfasu.edu>

Notes
1. Oddly enough, the very first definition I got when googling

“tool” was from Urban Dictionary: “One who lacks the men-
tal capacity to know he is being used. A fool. A cretin.
Characterized by low intelligence and/or self-esteem.” I’ll
save this definition for another column at a later date.

2. No names, but if you looked here, you were worried I was
going to mention you, right?

3. While dictionaries do not yet define “txt” as a word, it is inter-
esting to note that Microsoft Word did not flag it as mis-
spelled!

4. Bobbie Koshay. Found it on my first try, using my iPhone, at
<http://thewizardofoz.info>. Also note that Caren Marsh-
Doll also helped out with blocking and camera tests.

5. Yeah—I already know. Too late. Don’t e-mail.

Tools of the Trade
(or “Why Access Isn’t Just the Name

of a Database Program”)

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.

	Front Cover
	Table of Contents
	From the Sponsor
	Policies, News, and Updates
	CrossTalk Goes All Electronic:Turning Necessity into Opportunity

	Game-Changing Tools and Practices
	Static Analysis Is Not Just for Finding Bugs
	Considering Software Supply Chain Risks©
	Information Assurance Applications inSoftware Engineering Projects
	Studying Software Vulnerabilities
	The Balance of Secure Development and SecureOperations in the Software Security Equation
	Two Initiatives for DisseminatingSoftware Assurance Knowledge

	Coming Events
	Web Sites
	BackTalk
	Back Cover

